DOI QR코드

DOI QR Code

Malformations of cortical development: genetic mechanisms and diagnostic approach

  • Lee, Jeehun (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2015.05.29
  • Accepted : 2015.12.16
  • Published : 2017.01.15

Abstract

Malformations of cortical development are rare congenital anomalies of the cerebral cortex, wherein patients present with intractable epilepsy and various degrees of developmental delay. Cases show a spectrum of anomalous cortical formations with diverse anatomic and morphological abnormalities, a variety of genetic causes, and different clinical presentations. Brain magnetic resonance imaging has been of great help in determining the exact morphologies of cortical malformations. The hypothetical mechanisms of malformation include interruptions during the formation of cerebral cortex in the form of viral infection, genetic causes, and vascular events. Recent remarkable developments in genetic analysis methods have improved our understanding of these pathological mechanisms. The present review will discuss normal cortical development, the current proposed malformation classifications, and the diagnostic approach for malformations of cortical development.

Keywords

References

  1. Barkovich AJ, Kuzniecky RI, Dobyns WB, Jackson GD, Becker LE, Evrard P. A classification scheme for malformations of cortical development. Neuropediatrics 1996;27:59-63. https://doi.org/10.1055/s-2007-973750
  2. Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012;135(Pt 5):1348-69. https://doi.org/10.1093/brain/aws019
  3. Kuzniecky RI. Magnetic resonance imaging in developmental disorders of the cerebral cortex. Epilepsia 1994;35 Suppl 6:S44-56. https://doi.org/10.1111/j.1528-1157.1994.tb05988.x
  4. Pang T, Atefy R, Sheen V. Malformations of cortical development. Neurologist 2008;14:181-91. https://doi.org/10.1097/NRL.0b013e31816606b9
  5. Chenn A, McConnell SK. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 1995;82:631-41. https://doi.org/10.1016/0092-8674(95)90035-7
  6. Hu WF, Chahrour MH, Walsh CA. The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet 2014;15:195-213. https://doi.org/10.1146/annurev-genom-090413-025600
  7. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell 2011;146:18-36. https://doi.org/10.1016/j.cell.2011.06.030
  8. Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci 2006;7:687-96. https://doi.org/10.1038/nrn1954
  9. Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 2011;21:1674-94. https://doi.org/10.1093/cercor/bhq238
  10. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013;14:755-69. https://doi.org/10.1038/nrn3586
  11. Thornton GK, Woods CG. Primary microcephaly: do all roads lead to Rome? Trends Genet 2009;25:501-10. https://doi.org/10.1016/j.tig.2009.09.011
  12. Desir J, Cassart M, David P, Van Bogaert P, Abramowicz M. Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally. Am J Med Genet A 2008;146A:1439-43. https://doi.org/10.1002/ajmg.a.32312
  13. Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosomeassociated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010;42:1015-20. https://doi.org/10.1038/ng.683
  14. Feng Y, Walsh CA. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 2004;44:279-93. https://doi.org/10.1016/j.neuron.2004.09.023
  15. Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010;42:245-9. https://doi.org/10.1038/ng.526
  16. Griffith E, Walker S, Martin CA, Vagnarelli P, Stiff T, Vernay B, et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat Genet 2008;40:232-6. https://doi.org/10.1038/ng.2007.80
  17. Leventer RJ, Jansen A, Pilz DT, Stoodley N, Marini C, Dubeau F, et al. Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 2010;133(Pt 5):1415-27. https://doi.org/10.1093/brain/awq078
  18. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006;355:1345-56. https://doi.org/10.1056/NEJMra055323
  19. de Vries PJ. Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics 2010;7:275-82. https://doi.org/10.1016/j.nurt.2010.05.001
  20. Tinkle BT, Schorry EK, Franz DN, Crone KR, Saal HM. Epidemiology of hemimegalencephaly: a case series and review. Am J Med Genet A 2005;139:204-11.
  21. Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012;74:41-8. https://doi.org/10.1016/j.neuron.2012.03.010
  22. Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. De novo somatic mutations in components of the PI3KAKT3- mTOR pathway cause hemimegalencephaly. Nat Genet 2012;44:941-5. https://doi.org/10.1038/ng.2329
  23. Fauser S, Huppertz HJ, Bast T, Strobl K, Pantazis G, Altenmueller DM, et al. Clinical characteristics in focal cortical dysplasia: a retrospective evaluation in a series of 120 patients. Brain 2006; 129(Pt 7):1907-16. https://doi.org/10.1093/brain/awl133
  24. Blumcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011; 52:158-74. https://doi.org/10.1111/j.1528-1167.2010.02777.x
  25. Tassi L, Colombo N, Garbelli R, Francione S, Lo Russo G, Mai R, et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 2002;125(Pt 8):1719-32. https://doi.org/10.1093/brain/awf175
  26. Lim JS, Kim WI, Kang HC, Kim SH, Park AH, Park EK, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 2015;21:395-400. https://doi.org/10.1038/nm.3824
  27. Tassi L, Colombo N, Cossu M, Mai R, Francione S, Lo Russo G, et al. Electroclinical, MRI and neuropathological study of 10 patients with nodular heterotopia, with surgical outcomes. Brain 2005; 128(Pt 2):321-37.
  28. Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, et al. Doublecortin, a brain-specific gene mutated in human Xlinked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998;92:63-72. https://doi.org/10.1016/S0092-8674(00)80899-5
  29. Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993;364:717-21. https://doi.org/10.1038/364717a0
  30. Poirier K, Keays DA, Francis F, Saillour Y, Bahi N, Manouvrier S, et al. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 2007;28:1055-64. https://doi.org/10.1002/humu.20572
  31. Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, et al. Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007;128:45-57. https://doi.org/10.1016/j.cell.2006.12.017
  32. Dobyns WB, Berry-Kravis E, Havernick NJ, Holden KR, Viskochil D. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. Am J Med Genet 1999;86:331-7. https://doi.org/10.1002/(SICI)1096-8628(19991008)86:4<331::AID-AJMG7>3.0.CO;2-P
  33. des Portes V, Pinard JM, Smadja D, Motte J, Boespflug-Tanguy O, Moutard ML, et al. Dominant X linked subcortical laminar heterotopia and lissencephaly syndrome (XSCLH/LIS): evidence for the occurrence of mutation in males and mapping of a potential locus in Xq22. J Med Genet 1997;34:177-83. https://doi.org/10.1136/jmg.34.3.177
  34. Fukuyama Y, Osawa M, Suzuki H. Congenital progressive muscular dystrophy of the Fukuyama type - clinical, genetic and pathological considerations. Brain Dev 1981;3:1-29. https://doi.org/10.1016/S0387-7604(81)80002-2
  35. Lee J, Lee BL, Lee M, Kim JH, Kim JW, Ki CS. Clinical and genetic analysis of a Korean patient with Fukuyama congenital muscular dystrophy. J Neurol Sci 2009;281:122-4. https://doi.org/10.1016/j.jns.2009.02.373
  36. Santavuori P, Somer H, Sainio K, Rapola J, Kruus S, Nikitin T, et al. Muscle-eye-brain disease (MEB). Brain Dev 1989;11:147-53. https://doi.org/10.1016/S0387-7604(89)80088-9
  37. Dobyns WB, Pagon RA, Armstrong D, Curry CJ, Greenberg F, Grix A, et al. Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 1989;32:195-210. https://doi.org/10.1002/ajmg.1320320213
  38. Piao X, Chang BS, Bodell A, Woods K, Benzeev B, Topcu M, et al. Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 2005;58:680-7. https://doi.org/10.1002/ana.20616
  39. Marin-Padilla M, Parisi JE, Armstrong DL, Sargent SK, Kaplan JA. Shaken infant syndrome: developmental neuropathology, progressive cortical dysplasia, and epilepsy. Acta Neuropathol 2002;103: 321-32. https://doi.org/10.1007/s00401-001-0470-z
  40. Krsek P, Jahodova A, Maton B, Jayakar P, Dean P, Korman B, et al. Low-grade focal cortical dysplasia is associated with prenatal and perinatal brain injury. Epilepsia 2010;51:2440-8. https://doi.org/10.1111/j.1528-1167.2010.02730.x
  41. Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 2004;75:261-6. https://doi.org/10.1086/422855
  42. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet 2002;32:316-20. https://doi.org/10.1038/ng995
  43. Hung LY, Tang CJ, Tang TK. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol 2000;20:7813-25. https://doi.org/10.1128/MCB.20.20.7813-7825.2000
  44. Bhat V, Girimaji SC, Mohan G, Arvinda HR, Singhmar P, Duvvari MR, et al. Mutations in WDR62, encoding a centrosomal and nuclear protein, in Indian primary microcephaly families with cortical malformations. Clin Genet 2011;80:532-40. https://doi.org/10.1111/j.1399-0004.2011.01686.x
  45. Adachi H, Tsujimoto M, Hattori M, Arai H, Inoue K. cDNA cloning of human cytosolic platelet-activating factor acetylhydrolase gamma-subunit and its mRNA expression in human tissues. Biochem Biophys Res Commun 1995;214:180-7. https://doi.org/10.1006/bbrc.1995.2272
  46. Zaki M, Shehab M, El-Aleem AA, Abdel-Salam G, Koeller HB, Ilkin Y, et al. Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation. Am J Med Genet A 2007;143A:939-44. https://doi.org/10.1002/ajmg.a.31667
  47. Leandro-Garcia LJ, Leskela S, Landa I, Montero-Conde C, Lopez-Jimenez E, Leton R, et al. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 2010;67:214-23. https://doi.org/10.1002/cm.20436
  48. Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998;21:1315-25. https://doi.org/10.1016/S0896-6273(00)80651-0
  49. Bienvenu T, Poirier K, Friocourt G, Bahi N, Beaumont D, Fauchereau F, et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum Mol Genet 2002;11:981-91. https://doi.org/10.1093/hmg/11.8.981
  50. Hewitt JE. Abnormal glycosylation of dystroglycan in human genetic disease. Biochim Biophys Acta 2009;1792:853-61. https://doi.org/10.1016/j.bbadis.2009.06.003
  51. Raducu M, Baets J, Fano O, Van Coster R, Cruces J. Promoter alteration causes transcriptional repression of the POMGNT1 gene in limb-girdle muscular dystrophy type 2O. Eur J Hum Genet 2012;20:945-52. https://doi.org/10.1038/ejhg.2012.40
  52. Poirier K, Lebrun N, Broix L, Tian G, Saillour Y, Boscheron C, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 2013;45:639-47. https://doi.org/10.1038/ng.2613
  53. Jurado LA, Coloma A, Cruces J. Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34.1. Genomics 1999;58:171-80. https://doi.org/10.1006/geno.1999.5819
  54. van Reeuwijk J, Janssen M, van den Elzen C, Beltran-Valero de Bernabe D, Sabatelli P, Merlini L, et al. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 2005;42:907-12. https://doi.org/10.1136/jmg.2005.031963
  55. Paulsson M, Deutzmann R, Timpl R, Dalzoppo D, Odermatt E, Engel J. Evidence for coiled-coil alpha-helical regions in the long arm of laminin. EMBO J 1985;4:309-16. https://doi.org/10.1002/j.1460-2075.1985.tb03630.x

Cited by

  1. Lissencephaly in a Pekingese vol.79, pp.10, 2017, https://doi.org/10.1292/jvms.17-0271
  2. Advances in genomic diagnosis of a large cohort of Egyptian patients with disorders of sex development vol.185, pp.6, 2017, https://doi.org/10.1002/ajmg.a.62129