References
- Blackard, J.A., Finco, M.V., Helmer, E.H., Holden, G.R., Hoppus, M.L., Jacobs, D.M., Lister, A.J., Moisen, G.G., Nelson, M.D., Riemann, R., Ruefenacht, B., Salajanu, D., Weyermann, D.L., Winterberger, K.C., Brandeis, T.J., Czaplewski, R.L., McRoberts, R.E., Patterson, P.L. and Tymcio, P.P. 2008. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sensing of Environment 112(4): 1658-1677. https://doi.org/10.1016/j.rse.2007.08.021
- Breidenbach, J., Naesset, E. and Gobakken, T. 2012. Improving k-nearest neighbor predictions in forest inventories by combining high and low density airborne laser scanning data. Remote sensing of environment 117: 358-365. https://doi.org/10.1016/j.rse.2011.10.010
- Chun J.H., Lim, J.H. and Lee, D.K. 2007. Biomass estimation of Gwangneung catchment area with Landsat ETM+ image. Journal of Korean Forestry Society 96(5): 591-601.
- Chung, S.Y., Yim, J.S., Cho, H.K., Jeong, J.H., Kim, S.H. and Shin, M.Y. 2009. Estimation of forest biomass for Muju county using biomass conversion table and remote sensing data. Journal of Korean Forest Society 98(4): 409-416.
- Fournier, R.A., Luther, J.E., Guindon, L., Lambert, M.C., Piercey, D., Hall, R.J. and Wulder, M.A. 2003. Mapping aboveground tree biomass at the stand level from inventory information: test cases in Newfoundland and Quebec. Canadian Journal of Forest Resources 33: 1846-1863. https://doi.org/10.1139/x03-099
- Fuchs, H., Magdon, C., Kleinn, C. and Flessa, H. 2009. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory. Remote Sensing of Environment 113(3): 518-531. https://doi.org/10.1016/j.rse.2008.07.017
- Gjertsen, A.K. 2007. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sensing of Environment 110(4): 420-430. https://doi.org/10.1016/j.rse.2006.08.018
- Jung, J.H., Heo, J., Yoo, S.H., Kim, K.M. and Lee, J.B. 2010. Estimation of aboveground biomass carbon stock in Danyang area using kNN algorithm and landsat TM seasonal satellite images. Journal of the Korean Society for Geospatial Information Science 18(4): 119-129.
- Jung, J.H., Kim, S.P., Hong, S.C., Kim, K.M., Kim, E.S., Im, J.H. and Heo, J. 2013. Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm. Journal of Photogrammetry and Remote Sensing 82: 82-92.
- Kim, E.S., Kim, K.M., Kim, C.C., Lee, S.H. and Kim, S.H. 2010. Estimating the spatial distribution of forest stand volume in Gyeonggi Province using national forest inventory data and forest type map. Journal of Korean Forest Society 99(6): 827-835.
- Kim, E.S., Kim, K.M., Lee, J.B., Lee, S.H. and Kim. C.C. 2011a. Spatial upscaling of aboveground biomass estimation using national forest inventory data and forest type map. Journal of Korean Forest Society 100(3): 455-465.
- Kim, K.D., Park, J.W., Park, I.H., Kim, C.M. and Cheong, S.H. 1985. Growth and dry matter production of Pinus Rigida Mill and Robinia Pseudoacacia L. Journal of Korea Forestry Energy Research Society 5(1): 1-9.
- Kim, K.M., Lee, J.B., Kim, E.S., Park, H.J., Roh, Y.H., Lee, S.H., Park, K.H. and Shin. H.S. 2011b. Overview of research trends in estimation of forest carbon stocks based on remote sensing and GIS. Journal of Korean Association of Geographic Information Studies 14(3): 236-256. https://doi.org/10.11108/kagis.2011.14.3.236
- Kim, S.Y. 2011. Assessment of crown fire hazard based on the fuel characteristics in Pinus densiflora stands. Department of Forest Resource Graduate School of Kongju National University PP. 84.
- Korea Forest Research Institute. 2010. Main tree species carbon emission factors for forest greenhouse inventory pp. 89.
- Korea Forest Service. 2009. Table of tree harvest and weight and volume. pp. 21.
- Kwak, D.A., Lee, W.K. and Son, M.H. 2005. Application of LiDAR for measuring individual trees and forest stands. Journal of Korean Forest Society 94(6): 431-440.
- Labrecque, S., Fournier, R.A., Luther, J.E. and Piercey, D. 2006. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management 226: 129-144. https://doi.org/10.1016/j.foreco.2006.01.030
- Lee, C.S., Lee, W.K., Yoon, J.H. and Song, C.C. 2006. Distribution pattern of Pinus densiflora and Quercus Spp. stand in Korea using spatial statistics and GIS. Journal of Korean Forest Society 95(6): 663-671.
- Lee, W.K. 1996. Stand and general Height-DBH curve models for Pinus densiflora in Kangwon Province. Journal of Korean Forest Economics Society 4(2): 66-78.
- Lumbres, R.I. and Lee, Y.J. 2014. Aboveground biomass mapping of La Trinidad forests in Benguet, Philippines, using Landsat thematic mapper data and k-nearest neighbor method. Forest Science and Technology 10(2): 104-111. https://doi.org/10.1080/21580103.2013.866171
- Magnussen, S., McRoberts, R.E. and Tomppo, E.O. 2009. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sensing of Environment 113(3): 478-488.
- McRoberts, R.E., Tomppo, E.O., Finley, A.O. and Heikkinen, J. 2007. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sensing of Environment 111(4): 466-480. https://doi.org/10.1016/j.rse.2007.04.002
- Nelson, R., Jimenez-Ramon, J.A., Schnell, C.E., Hartshorn, G.S., Gregoire, T.G., and Oderwald, R. 2000, Canopy height models and airborne lasers to estimate forest biomass: two problems. International Journal of Remote Sensing 21(11): 2153-2162. https://doi.org/10.1080/01431160050029486
- O'Brien, S.T., Hubbell, S.P., Spiro, P. and Condit, R. 1995. Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology 76(6): 1926-1939. https://doi.org/10.2307/1940724
- Park, H.J., Shin, H.S., Roh, Y.H., Kim, K.M. and Park. K.H. 2012. Estimating forest carbon stocks in Danyang using Kriging methods for aboveground biomass. Journal of The Korean Association of Geographic information Studies 15(1): 16-33. https://doi.org/10.11108/kagis.2012.15.1.016
- Rahman, M.M., Csaplovics, E., and Koch, B. 2008. Satellite estimation of forest carbon using regression models. International Journal of Remote Sensing 29(23): 6917-6936. https://doi.org/10.1080/01431160802144187
- Reese, H., Nilsson, M., Sandstrom, P., and Olson, H. 2002. Application using estimates of forest of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture 37: 37-55. https://doi.org/10.1016/S0168-1699(02)00118-7
- SAS Institute, Inc., 2004. SAS/STAT 9.1 User's Guide. SAS Institute, Inc. Cary. NC.
- Shim, W.B., Jeong, J.H., Kim, S.H., Kim, J.S., Ryu, J.H., Kim, J.C., Seo, S.A. and You, B.O. 2008. 5th Korea national forest inventory-field survey manual-Korea Forest Research Institute. pp. 54.
- Shin, J.H. 2012. Estimation of forest biomass and carbon dioxide absorption using ggeographic information system (GIS) and remote sensing. Department of environmental health graduate school of Public Health, Seoul National University pp. 52.
- Statistical Yearbook of Muju. 2013. pp. 34-49.
- Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P. and Kennedy, P. 2002. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment 82: 156-171. https://doi.org/10.1016/S0034-4257(02)00031-7
- Yim, J.S., Han, W.S., Hwang, J.H., Chung, S.Y., Cho, H.K. and Shin, M.Y. 2009. Estimation of forest biomass based upon satellite date and national forest inventory data. Journal of Korean Remote Sensing 25(4):311-320.
- You, B.O., Kim, C.C. and Kim, S.H. 2011. Development of FAPIS (Forest Aerial Photograph Interpretation System) for digital forest cover type mapping (Version 1.0). Journal of The Korean Association of Geographic Information Studies 14(2): 128-137. https://doi.org/10.11108/kagis.2011.14.2.128