DOI QR코드

DOI QR Code

Effect of Coolants and Metal Bumps on the heat Removal of Liquid Cooled Microchannel System

액랭식 마이크로채널 시스템 내 냉매와 범프의 열 제거 효과에 대한 연구

  • Won, Yonghyun (Graduate School of Nano-IT-Design, Seoul National Univ. of Science and Technology) ;
  • Kim, Sungdong (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT-Design, Seoul National Univ. of Science and Technology)
  • 원용현 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2017.04.25
  • Accepted : 2017.06.29
  • Published : 2017.06.30

Abstract

As transistor density increases rapidly, a heat flux from IC device rises at fast rate. Thermal issues raised by high heat flux cause IC's performance and reliability problems. To solve these thermal management problems, the conventional cooling methods of IC devices were reached their thermal limit. As a result, alternative cooling methods such as liquid heat pipe, thermoelectric cooler, thermal Si via and etc. are currently emerging. In this paper microchannel liquid cooling system with TSV was investigated. The effects of 2 coolants (DI water and ethylene glycol 70 wt%) and 3 metal bumps (Ag, Cu, Cr/Au/Cu) on cooling performance were studied, and the total heat flux of various coolant and bump cases were compared. Surface temperature of liquid cooling system was measured by infrared microscopy, and liquid flowing through microchannel was observed by fluorescence microscope. In the case of ethylene glycol 70 wt% at $200^{\circ}C$ heating temperature, the total heat flux was $2.42W/cm^2$ and most of total heat flux was from liquid cooling effect.

소자의 트랜지스터 밀도가 급속히 높아짐에 따라 소자 내부에서 발생하는 열 유속(heat flux) 또한 빠르게 증가하고 있다. 소자의 고열 문제는 소자의 성능과 신뢰성 감소에 크게 영향을 미친다. 기존의 냉각방법들은 이러한 고열문제를 해결하기 위해선 한계점에 다다랐고, 그 대안으로 liquid heat pipe, thermoelectric cooler, thermal Si via, 등 여러 냉각방법이 연구되고 있다. 본 실험에서는 직선형 마이크로채널과 TSV(through Si via)를 이용한 액체 냉각시스템을 연구하였다. 두 종류의 냉매(DI water와 ethylene glycol(70 wt%))와 3 종류의 금속 범프(Ag, Cu, Cr/Au/Cu)의 영향을 분석하였으며, 대류, 복사 및 액체 냉각으로 인한 총 열 유속을 계산하여 비교하였다. 냉각 전후의 냉각시스템의 표면온도는 적외선현미경을 통해 측정하였고, 마이크로채널 내 액체 흐름은 형광현미경을 이용하여 측정하였다. 총 열 유속은 ethylene glycol(70 wt%)의 경우 가열 온도 $200^{\circ}C$에서 $2.42W/cm^2$로 나타났으며 대부분 액체 냉각 효과에 의한 결과로 확인되었다.

Keywords

References

  1. B. Dang, "Integrated Thermal-Fluidic I/O Interconnects for an On-Chip Microchannel Heat Sink", IEEE Electron Device Letters, 27(2), 117 (2006). https://doi.org/10.1109/LED.2005.862693
  2. T. G. Yue, T. S. Pin, N. Khan, D. Pinjala, J. H. Lau, and Y. A. Bin, "Fluidic Interconnects in Integrated Liquid Cooling Systems for 3-D Stacked TSV Modules", Proc. 10th Electronics Packaging Technology Conference, IEEE, 552 (2008).
  3. J. H. Lau, and T. G. Yue, "Effects of TSVs (through-silicon vias) on thermal performance of 3D IC integration system-in-package (SiP)", Microelectron. Reliab., 52, 2660 (2012). https://doi.org/10.1016/j.microrel.2012.04.002
  4. B. Shi, and A. Srivastava, "TSV-Constrained Micro-Channel Infrastructure Design for Cooling Stacked 3D-ICs", ISPD 12', ACM, 112 (2012).
  5. A. J. McNamara, Y. Joshi, and Z. M. Zhang, "Characterization of nanostructured thermal interface materials: A review", Int. J. Therm. Sci., 62, 2 (2011).
  6. J. L. Ayala, and A. Sridhar, V. Pangracious, D. Atienza and Y. Leblebici, "Through silicon vias-based grid for thermal control in 3D chips", Proc. 4th Int. ICST Conf. Nano-Networks, 1(1), 90 (2009).
  7. N. Khan, L. H. Yu, T. S. Pin, S. W. Ho, V. Kripesh, D. Pinjala, J. H. Lau, and T. K. Chuan, "3-D packaging with through-silicon via (TSV) for electrical and fluidic interconnections", IEEE Trans. Comp., Packag., and Manuf. Tech., 3(2), 221 (2013). https://doi.org/10.1109/TCPMT.2012.2186297
  8. M. Park, S. Kim, and S. E. Kim, "TSV liquid cooling system for 3D integrated circuits", J. Microelectron. Package. Soc., 20(3), 1 (2013).
  9. M. Park, S. Kim, and S. E. Kim, "Study of chip-level liquid cooling for high-heat-flux devices", J. Microelectron. Package. Soc., 22(2), 27 (2015).
  10. K. J. Wang, and Z. L. Pan, "Integrated Microchannel Cooling In A Three Dimensional Integrated Circuit A Thermal Mangement", Thermal Science, 20(3), 899 (2016). https://doi.org/10.2298/TSCI1603899W
  11. Y. Won, S. Kim, and S. E. Kim, "Study of on-chip liquid cooling in relation to micro-channel design", J. Microelectrion. Packag. Soc., 22(4), 31 (2015).
  12. D. Kearney, T. Hilt, and P. Pham, "A liquid cooling solution for temperature redistribution in 3D IC architectures", Microelectronics Journal, 43, 603 (2012).
  13. B. R. Fu, C. Y. Lee, and C. Pan, "The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink", Int. J. Heat and Mass Transfer, 58(1), 53 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.050
  14. T. Harirchian, and S. V. Garimella, "Microchannel size effects on local flow boiling heat transfer to a dielectric fluid", Int. J. Heat and Mass Transfer, 51(15), 3724 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013
  15. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, "Principles of Heat and Mass Transfer", John Wiley & Sons, Inc., 9 (2014).
  16. The Engineering Toolbox, "Convection heat transfer", (http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html)
  17. B. Sopori, W. Chen, J. Madjdpour, and N. M. Ravindra, "Calculation of emissivity of Si wafers", J. Electron. Mater., 28(12), 1385 (1999). https://doi.org/10.1007/s11664-999-0126-7
  18. Wikipedea, "List of thermal conductivity", (https://en.wikipedia.org/wiki/List_of_thermal_conductivities)
  19. The Engineering Toolbox, "Metals-Specific heats", (http://www.engineeringtoolbox.com/specific-heat-metals-d_152.html)
  20. Ethylene Glycol Product Guide, (http://www.meglobal.biz/media/product_guides/MEGlobal_MEG.pdf)
  21. Water - Thermal Properties, (http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html)
  22. Viscosity -Wikipedia, (https://en.wikipedia.org/wiki/Viscosity)