References
- G. Lorentzen, J. Pettersen, A new, efficient and environmentally benign system for car air-conditioning, Int. J. Refrig 16 (1993) 4-12. https://doi.org/10.1016/0140-7007(93)90014-Y
-
L. Chen, B.L. Deng, X.R. Zhang, Experimental investigation of
$CO_2$ thermosyphon flow and heat transfer in the supercritical region, Int. J. Heat Mass Transfer 64 (2013) 202-211. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.077 -
L. Chen, B.L. Deng, X.R. Zhang, Experimental study of transcritical and supercritical
$CO_2$ natural circulation flow in a closed loop, Appl. Therm. Eng 59 (2013) 1-13. https://doi.org/10.1016/j.applthermaleng.2013.05.017 -
Y. Cao, X.R. Zhang, Flow and heat transfer characteristics of supercritical
$CO_2$ in a natural circulation loop, Int. J. Therm. Sci. 58 (2012) 52-60. https://doi.org/10.1016/j.ijthermalsci.2012.02.023 -
L. Chen, B.L. Deng, B. Jiang, X.R. Zhang, Thermal and hydrodynamic characteristics of supercritical
$CO_2$ natural circulation in closed loops, Nucl. Eng. Des 257 (2013) 21-30. https://doi.org/10.1016/j.nucengdes.2013.01.016 - M.K.S. Sarkar, D.N. Basu, Working regime identification for natural circulation loops by comparative thermalhydraulic analyses with three fluids under identical operating conditions, Nucl. Eng. Des 293 (2015) 187-195. https://doi.org/10.1016/j.nucengdes.2015.07.046
- M. Sharma, D.S. Pilkhwal, P.K. Vijayan, D. Saha, R.K. Sinha, Steady-state behavior of natural circulation loops operating with supercritical fluids for open and closed loop boundary conditions, Heat Transfer Eng 33 (2012) 809-820. https://doi.org/10.1080/01457632.2012.646920
- M. Sharma, P.K. Vijayan, D.S. Pilkhwal, Y. Asako, Steady state and stability characteristics of natural circulation loops operating with carbon dioxide at supercritical pressures for open and closed loop boundary conditions, Nucl. Eng. Des 265 (2013) 737-754. https://doi.org/10.1016/j.nucengdes.2013.07.023
- M. Sharma, P.K. Vijayan, D.S. Pilkhwal, Y. Asako, Natural convective flow and heat transfer studies for supercritical water in a rectangular circulation loop, Nucl. Eng. Des 273 (2014) 304-320. https://doi.org/10.1016/j.nucengdes.2014.04.001
-
A.K. Yadav, M.R. Gopal, S. Bhattacharyya, CFD analysis of a
$CO_2$ based natural circulation loop with end heat exchangers, Appl. Therm. Eng 36 (2012) 288-295. https://doi.org/10.1016/j.applthermaleng.2011.10.031 -
A.K. Yadav, M.R. Gopal, S. Bhattacharyya,
$CO_2$ based natural circulation loops: new correlations for friction and heat transfer, Int. J. Heat Mass Transfer 55 (2012) 4621-4630. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.019 -
L. Chen, X.R. Zhang, S. Cao, H. Bai, Study of trans-critical
$CO_2$ natural convective flow with unsteady heat input and its implications on system control, Int. J. Heat Mass Transfer 55 (2012) 7119-7132. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.027 -
L. Chen, X.R. Zhang, B.L. Deng, B. Jiang, Effects of inclination angle and operation parameters on supercritical
$CO_2$ natural circulation loop, Nucl. Eng. Des 265 (2013) 895-908. https://doi.org/10.1016/j.nucengdes.2013.06.037 -
X.R. Zhang, L. Chen, H. Yamaguchi, Natural convective flow and heat transfer of supercritical
$CO_2$ in a rectangular circulation loop, Int. J. Heat Mass Transfer 53 (2010) 4112-4122. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.031 - M.K.S. Sarkar, A.K. Tilak, D.N. Basu, A state-of-the-art review of recent advances in supercritical natural circulation loops for nuclear applications,, Ann. Nucl. Energy 73 (2014) 250-263. https://doi.org/10.1016/j.anucene.2014.06.035
- E.F. Clark, Camp Century: Evolution of Concept and History of Design, Construction and Performance, Technical Report, United States Army Materiel Command Cold Regions Research and Engineering Laboratory, 1965.
- D.E. Ruiz, A. Cammi, L. Luzzi, Dynamic stability of natural circulation loops for single phase fluids with internal heat generation, Chem. Eng. Sci 126 (2015) 573-583. https://doi.org/10.1016/j.ces.2014.12.050
-
L. Chen, X.R. Zhang, Simulation of heat transfer and system behavior in a supercritical
$CO_2$ based thermosyphon: effect of pipe diameter, J. Heat Transfer 133 (2011) 2505-2513. - P.E. Tuma, H.R. Mortazavi, Indirect thermosyphon for cooling electronic devices, Electron. Cooling 12 (2006) 26-32.
- B.Y. Tong, T.N. Wong, K.T. Ooi, Closed-loop pulsating heat pipe, Appl. Therm. Eng 21 (2001) 1845-1862. https://doi.org/10.1016/S1359-4311(01)00063-1
- S. Khandekar, M. Groll, An insight into thermos-hydrodynamic coupling in closed loop pulsating heat pipes, Int. J. Therm. Sci. 43 (2004) 13-20. https://doi.org/10.1016/S1290-0729(03)00100-5
- B.T. Swapnalee, P.K. Vijayan, M. Sharma, D.S. Pilkhwal, Steady state flow and static instability of supercritical natural circulation loops, Nucl. Eng. Des 245 (2012) 99-112. https://doi.org/10.1016/j.nucengdes.2012.01.002
-
V. Archana, A.M. Vaidya, P.K. Vijayan, Numerical modeling of supercritical
$CO_2$ natural circulation loop, Nucl. Eng. Des 293 (2015) 330-345. https://doi.org/10.1016/j.nucengdes.2015.07.030
Cited by
- Natural circulation systems in nuclear reactors: advantages and challenges vol.467, pp.None, 2017, https://doi.org/10.1088/1755-1315/467/1/012077
- Review of carbon dioxide (CO2) based heating and cooling technologies: Past, present, and future outlook vol.44, pp.3, 2017, https://doi.org/10.1002/er.5024