References
- Afshar, A. Daneshyar, A. & Mohammadi, S., 2015. XFEM analysis of fiber bridging in mixed-mode crack propagation in composites. Composite Structures, 125, pp.314-327. https://doi.org/10.1016/j.compstruct.2015.02.002
- Belytschko, T. & Black, T., 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), pp.601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Belytschko, T. Gracie, R. & Ventura, G., 2009. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering, 17(4), pp.043001. https://doi.org/10.1088/0965-0393/17/4/043001
- Belytschko, T. Moes, N. Usui, S. & Parimi, C., 2001. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 50(4), pp 993-1013. https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
- British Standard(BS), 2015. Guide to methods for assessing the acceptability of flaws in metallic structures. BS 7910:2013+A1:2015. British Standards Publishing Limited: London.
- Bui, T.Q. & Zhang, C., 2013. Analysis of generalized dynamic intensity factors of cracked magneto electro elastic solids by XFEM. Finite Elements in Analysis and Design, 69, pp.19-36. https://doi.org/10.1016/j.finel.2013.02.001
- Det Norske Veritas(DNV), 2014. Fatigue assessment of ship structures. Classification Notes, No. 30.7. Det Norske Veritas: Oslo.
- Fries, T.P. & Belytschko, T., 2010. The extended/generalized finite element method: an overview of the method and its applications. International Journal for Numerical Methods in Engineering, 84(3), pp.253-304. https://doi.org/10.1002/nme.2914
- Gravouil, A. Moes, N. & Belytschko, T., 2002. Non-planar 3D crack growth by the extended finite element and level sets-Part I & II: Mechanical model. International Journal for Numerical Methods in Engineering, 53(11), pp.2549-2586. https://doi.org/10.1002/nme.429
- Jeon, Y.C. Kim, Y.I. Kang, J.K. & Han, J.M., 2001. A study on fatigue life prediction of welded joints through fatigue test and crack propagation analysis. Journal of the Society of Naval Architects of Korea, 38(3), pp.93-106.
- Kim, K.S. Ito, H. Seo, Y.S. Jang, B.S. Kim, B.I. & Kwon, Y.B., 2008. A study of crack propagation and fatigue life prediction on welded joints of ship structure I. Journal of the Society of Naval Architects of Korea, 45(6), pp.669-678. https://doi.org/10.3744/SNAK.2008.45.6.669
- Lee, S.H. & Jeon, I.S., 2014. 3D analysis of crack growth in metal using tension tests and XFEM. Transactions Korean Society of Mechanical Engineers A, 38(4), pp.409-417. https://doi.org/10.3795/KSME-A.2014.38.4.409
- Newman, J.C. & Raju, I.S., 1981. An empirical stress-intensity factor equation for the surface crack. Engineering Fracture Mechanics, 15, pp. 185-192. https://doi.org/10.1016/0013-7944(81)90116-8
- Pang, J.H.L. Tsang, K.S. & Hoh, H.J., 2016. 3D stress intensity factors for weld toe semi-elliptical surface cracks using XFEM. Conference of the Marine Structures, 48, pp.1-14.
- Pourmodheji, R. & Mashayekhi, M., 2012. Improvement of the extended finite element method for ductile crack growth. Materials Science and Engineering A, 551, pp.255-271. https://doi.org/10.1016/j.msea.2012.05.014
- Rice, J.R., 1968. Independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35, pp.379-386. https://doi.org/10.1115/1.3601206
- Shen, Y. & Lew, A.J., 2014. A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids. Computer Methods in Applied Mechanics and Engineering, 273, pp.119-142. https://doi.org/10.1016/j.cma.2014.01.017
- Simulia, 2015. Abaqus user manual. Dassault Systemes: Rhode Island.
- Singh, I.V. Mishra, B.K. Bhattacharya, S. & Patil, R.U., 2012. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 36(1), pp.109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010
- Sumi, Y. Mohri, M. & Kawamura, Y., 2005. Computational prediction of fatigue crack paths in ship structural details. Fatigue & Fracture of Engineering Materials & Structures, 28(1/2), pp.107-115. https://doi.org/10.1111/j.1460-2695.2004.00850.x
- Yan, X. Huang, X. Huang, Y. & Cui, W., 2016. Prediction of fatigue crack growth in a ship detail under wave-induced loading. Ocean Engineering, 113, pp.246-254. https://doi.org/10.1016/j.oceaneng.2015.10.056