참고문헌
- L. Llanes, A. Mateo, P. Villechaise, J. Mendez, M. Anglada, Effect of testing atmosphere (air/in vacuo) on low cycle fatigue characteristics of a duplex stainless steel, Int. J. Fatigue 21 (1999) S119-S125. https://doi.org/10.1016/S0142-1123(99)00063-8
- Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des 259 (2013) 1-7. https://doi.org/10.1016/j.nucengdes.2013.02.037
- R. Strubbia, S. Herenu, A. Giertler, I. Alvarez-Armas, U. Krupp, Experimental characterization of short crack nucleation and growth during cycling in lean duplex stainless steels, Int. J. Fatigue 65 (2014) 58-63. https://doi.org/10.1016/j.ijfatigue.2013.08.023
- S. Li, Y. Wang, H. Zhang, S. Li, G. Wang, X. Wang, Effects of prior solution treatment on thermal aging behavior of duplex stainless steels, J. Nucl. Mater. 441 (2013) 337-342. https://doi.org/10.1016/j.jnucmat.2013.06.017
- S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging, J. Nucl. Mater. 433 (2013) 41-49. https://doi.org/10.1016/j.jnucmat.2012.09.004
- G. Chai, Fatigue behaviour of duplex stainless steels in the very high cycle regime, Int. J. Fatigue 28 (2006) 1611-1617. https://doi.org/10.1016/j.ijfatigue.2005.06.054
- Y.Q. Wang, B. Yang, J. Han, H.C. Wu, X.T. Wang, Effect of precipitated phases on the pitting corrosion of Z3CN20.09M cast duplex stainless steel, Mater. Trans. 54 (2013) 839-843. https://doi.org/10.2320/matertrans.M2012410
-
J.K. Sahu, U. Krupp, R.N. Ghosh, H.J. Christ, Effect of
$475^{\circ}C$ embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng. A 508 (2009) 1-14. https://doi.org/10.1016/j.msea.2009.01.039 - J.K. Sahu, U. Krupp, H.J. Christ, Fatigue crack initiation behavior in embrittled austenitic-ferritic stainless steel, Int. J. Fatigue 45 (2012) 8-14. https://doi.org/10.1016/j.ijfatigue.2012.06.018
- K. Yamaguchi, K. Kanazawa, Influence of grain size on the low-cycle fatigue lives of austenitic stainless steels at high temperatures, Metall. Trans. A 11 (1980) 1691-1699. https://doi.org/10.1007/BF02660524
- S. Xu, X.Q. Wu, E.H. Han, W. Ke, Y. Katada, Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water, Mater. Sci. Eng. A 490 (2008) 16-25. https://doi.org/10.1016/j.msea.2007.12.043
- X. Wu, E. Han, W. Ke, Y. Katada, Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water, Nucl. Eng. Des. 237 (2007) 1452-1459. https://doi.org/10.1016/j.nucengdes.2006.09.043
- H.P. Seifert, S. Ritter, H.J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions, Corros. Sci. 55 (2012) 61-75. https://doi.org/10.1016/j.corsci.2011.10.005
- M. Kamaya, Environmental effect on fatigue strength of stainless steel in PWR primary water - role of crack growth acceleration in fatigue life reduction, Int. J. Fatigue 55 (2013) 102-111. https://doi.org/10.1016/j.ijfatigue.2013.05.008
- R. Ebara, Corrosion fatigue crack initiation behavior of stainless steels, Procedia Eng. 2 (2010) 1297-1306. https://doi.org/10.1016/j.proeng.2010.03.141
- K.M. Perkins, M.R. Bache, Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments, Int. J. Fatigue 27 (2005) 1499-1508. https://doi.org/10.1016/j.ijfatigue.2005.06.031
- Y. Yi, B. Lee, S. Kim, J. Jang, Corrosion and corrosion fatigue behaviors of 9Cr steel in a supercritical water condition, Mater. Sci. Eng. A 429 (2006) 161-168. https://doi.org/10.1016/j.msea.2006.05.035
- M.F. Chiang, M.C. Young, J.Y. Huang, Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments, J. Nucl. Mater. 411 (2011) 83-89. https://doi.org/10.1016/j.jnucmat.2011.01.035
-
H. Cho, B.K. Kim, I.S. Kim, C. Jang, Low cycle fatigue behaviors of type 316LN austenitic stainless steel in
$310^{\circ}C$ deaerated water-fatigue life and dislocation structure development, Mater. Sci. Eng. A 476 (2008) 248-256. https://doi.org/10.1016/j.msea.2007.07.023 - H. Sun, X. Wu, E. Han, Y. Wei, Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water, Corros. Sci. 59 (2012) 334-342. https://doi.org/10.1016/j.corsci.2012.03.022
- H. Sun, X. Wu, E. Han, Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution, Corros. Sci. 51 (2009) 2840-2847. https://doi.org/10.1016/j.corsci.2009.08.006
- J. Xu, X. Wu, E. Han, The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment, Electrochim. Acta 71 (2012) 219-226. https://doi.org/10.1016/j.electacta.2012.03.148
- W. Kuang, X. Wu, E. Han, The oxidation behaviour of 304 stainless steel in oxygenated high temperature water, Corros. Sci. 52 (2010) 4081-4087. https://doi.org/10.1016/j.corsci.2010.09.001
- M. Fulger, M. Mihalache, D. Ohai, S. Fulger, S.C. Valeca, Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment, J. Nucl. Mater. 415 (2011) 147-157. https://doi.org/10.1016/j.jnucmat.2011.05.007
- M.F. Montemor, M.G.S. Ferreira, N.E. Hakiki, M. Da Cunha Belo, Chemical composition and electronic structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments, Corros. Sci. 42 (2000) 1635-1650. https://doi.org/10.1016/S0010-938X(00)00012-3
- X. Cheng, Z. Feng, C. Li, C. Dong, X. Li, Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments, Electrochim. Acta 56 (2011) 5860-5865. https://doi.org/10.1016/j.electacta.2011.04.127
- D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5 (1972) 4709-4714. https://doi.org/10.1103/PhysRevB.5.4709
- J.F. Moulder, F.S. William, E.S. Peter, Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN, 1992.
- K. Obrtlik, J. Polak, M. Hajek, A. Vasek, Short fatigue crack behaviour in 316L stainless steel, Int. J. Fatigue 19 (1997) 471-475. https://doi.org/10.1016/S0142-1123(97)00005-4
- M. Kamaya, M. Kawakubo, Strain-based modeling of fatigue crack growth - an experimental approach for stainless steel, Int. J. Fatigue 44 (2012) 131-140. https://doi.org/10.1016/j.ijfatigue.2012.05.006
- A. El Bartali, V. Aubin, S. Degallaix, Fatigue damage analysis in a duplex stainless steel by digital image correlation technique, Fatigue Fract. Eng. M. 31 (2008) 137-151. https://doi.org/10.1111/j.1460-2695.2007.01207.x
- J.Y. Huang, M.C. Young, S.L. Jeng, J.J. Yeh, J.S. Huang, R.C. Kuo, Corrosion fatigue behavior of low alloy steels under simulated BWR coolant conditions, J. Nucl. Mater. 405 (2010) 17-27. https://doi.org/10.1016/j.jnucmat.2010.07.029
- Z. Zhang, H. Zhao, H. Zhang, Z. Yu, J. Hu, L. He, J. Li, Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection, Corros. Sci. 93 (2015) 120-125. https://doi.org/10.1016/j.corsci.2015.01.014
- M. Gholami, M. Hoseinpoor, M.H. Moayed, A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel, Corros. Sci. 94 (2015) 156-164. https://doi.org/10.1016/j.corsci.2015.01.054
- T. Magnin, C. Ramade, J. Lepinoux, L.P. Kubin, Low-cycle fatigue damage mechanisms of F.c.c. and B.c.c. polycrystals: homologous behaviour, Mater. Sci. Eng. A 118 (1989) 41-51. https://doi.org/10.1016/0921-5093(89)90056-7
-
Y.Q. Wang, J. Han, B. Yang, X.T. Wang, Strengthening of
${\sigma}$ phase in a$Fe_{20}Cr_9Ni$ cast austenite stainless steel, Mater. Charact. 84 (2013) 120-125. https://doi.org/10.1016/j.matchar.2013.07.019 - T. Kruml, J. Polak, K. Obrtlik, S. Degallaix, Dislocation structures in the bands of localised cyclic plastic strain in austenitic 316L and austenitic-ferritic duplex stainless steels, Acta Mater 45 (1997) 5145-5151. https://doi.org/10.1016/S1359-6454(97)00178-X
- J. Man, T. Vystavel, A. Weidner, I. Kubena, M. Petrenec, T. Kruml, J. Polak, Study of cyclic strain localization and fatigue crack initiation using FIB technique, Int. J. Fatigue 39 (2012) 44-53. https://doi.org/10.1016/j.ijfatigue.2011.05.002
- I. Alvarez-Armas, U. Krupp, M. Balbi, S. Herenu, M.C. Marinelli, H. Knobbe, Growth of short cracks during low and high cycle fatigue in a duplex stainless steel, Int. J. Fatigue 41 (2012) 95-100. https://doi.org/10.1016/j.ijfatigue.2012.01.010
- M.C. Marinelli, U. Krupp, M. Kubbeler, S. Herenu, I. Alvarez-Armas, The effect of the embrittlement on the fatigue limit and crack propagation in a duplex stainless steel during high cycle fatigue, Eng. Fract. Mech. 110 (2013) 421-429. https://doi.org/10.1016/j.engfracmech.2013.03.034
피인용 문헌
- Preliminary validation of a dynamic electrochemical biodegradation test bench in pseudo-physiological conditions vol.33, pp.2, 2017, https://doi.org/10.1080/10667857.2017.1416972
- Effect of milling on the microstructure and mechanical property of austenite stainless steel vol.62, pp.12, 2020, https://doi.org/10.3139/120.111603