DOI QR코드

DOI QR Code

Effect of Oxidation on the Fatigue Crack Propagation Behavior of Z3CN20.09M Duplex Stainless Steel in High Temperature Water

  • Wu, Huan Chun (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Yang, Bin (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing) ;
  • Chen, Yue Feng (Collaborative Innovation Center of Steel Technology) ;
  • Chen, Xu Dong (Collaborative Innovation Center of Steel Technology)
  • Received : 2016.06.09
  • Accepted : 2016.12.25
  • Published : 2017.08.25

Abstract

The fatigue crack propagation behaviors of Z3CN20.09M duplex stainless steel (DSS) were investigated by studying oxide films of specimens tested in $290^{\circ}C$ water and air. The results indicate that a full oxide film that consisted of oxides and hydroxides was formed in $290^{\circ}C$ water. By contrast, only a half-baked oxide film consisting of oxides was formed in $290^{\circ}C$ air. Both environments are able to deteriorate the elastic modulus and hardness of the oxide films, especially the $290^{\circ}C$ water. The fatigue lives of the specimens tested in $290^{\circ}C$ air were about twice of those tested in $290^{\circ}C$ water at all strain amplitudes. Moreover, the crack propagation rates of the specimen tested in $290^{\circ}C$ water were confirmed to be faster than those tested in $290^{\circ}C$ air, which was thought to be due to the deteriorative strength of the oxide films induced by the mutual promotion of oxidation and crack propagation at the crack tip. It is noteworthy that the crack propagation can be postponed by the ferrite phase in the DSS, especially when the specimens were tested in $290^{\circ}C$ water.

Keywords

References

  1. L. Llanes, A. Mateo, P. Villechaise, J. Mendez, M. Anglada, Effect of testing atmosphere (air/in vacuo) on low cycle fatigue characteristics of a duplex stainless steel, Int. J. Fatigue 21 (1999) S119-S125. https://doi.org/10.1016/S0142-1123(99)00063-8
  2. Y.Q. Wang, J. Han, H.C. Wu, B. Yang, X.T. Wang, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des 259 (2013) 1-7. https://doi.org/10.1016/j.nucengdes.2013.02.037
  3. R. Strubbia, S. Herenu, A. Giertler, I. Alvarez-Armas, U. Krupp, Experimental characterization of short crack nucleation and growth during cycling in lean duplex stainless steels, Int. J. Fatigue 65 (2014) 58-63. https://doi.org/10.1016/j.ijfatigue.2013.08.023
  4. S. Li, Y. Wang, H. Zhang, S. Li, G. Wang, X. Wang, Effects of prior solution treatment on thermal aging behavior of duplex stainless steels, J. Nucl. Mater. 441 (2013) 337-342. https://doi.org/10.1016/j.jnucmat.2013.06.017
  5. S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, X.T. Wang, Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging, J. Nucl. Mater. 433 (2013) 41-49. https://doi.org/10.1016/j.jnucmat.2012.09.004
  6. G. Chai, Fatigue behaviour of duplex stainless steels in the very high cycle regime, Int. J. Fatigue 28 (2006) 1611-1617. https://doi.org/10.1016/j.ijfatigue.2005.06.054
  7. Y.Q. Wang, B. Yang, J. Han, H.C. Wu, X.T. Wang, Effect of precipitated phases on the pitting corrosion of Z3CN20.09M cast duplex stainless steel, Mater. Trans. 54 (2013) 839-843. https://doi.org/10.2320/matertrans.M2012410
  8. J.K. Sahu, U. Krupp, R.N. Ghosh, H.J. Christ, Effect of $475^{\circ}C$ embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng. A 508 (2009) 1-14. https://doi.org/10.1016/j.msea.2009.01.039
  9. J.K. Sahu, U. Krupp, H.J. Christ, Fatigue crack initiation behavior in embrittled austenitic-ferritic stainless steel, Int. J. Fatigue 45 (2012) 8-14. https://doi.org/10.1016/j.ijfatigue.2012.06.018
  10. K. Yamaguchi, K. Kanazawa, Influence of grain size on the low-cycle fatigue lives of austenitic stainless steels at high temperatures, Metall. Trans. A 11 (1980) 1691-1699. https://doi.org/10.1007/BF02660524
  11. S. Xu, X.Q. Wu, E.H. Han, W. Ke, Y. Katada, Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water, Mater. Sci. Eng. A 490 (2008) 16-25. https://doi.org/10.1016/j.msea.2007.12.043
  12. X. Wu, E. Han, W. Ke, Y. Katada, Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water, Nucl. Eng. Des. 237 (2007) 1452-1459. https://doi.org/10.1016/j.nucengdes.2006.09.043
  13. H.P. Seifert, S. Ritter, H.J. Leber, Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions, Corros. Sci. 55 (2012) 61-75. https://doi.org/10.1016/j.corsci.2011.10.005
  14. M. Kamaya, Environmental effect on fatigue strength of stainless steel in PWR primary water - role of crack growth acceleration in fatigue life reduction, Int. J. Fatigue 55 (2013) 102-111. https://doi.org/10.1016/j.ijfatigue.2013.05.008
  15. R. Ebara, Corrosion fatigue crack initiation behavior of stainless steels, Procedia Eng. 2 (2010) 1297-1306. https://doi.org/10.1016/j.proeng.2010.03.141
  16. K.M. Perkins, M.R. Bache, Corrosion fatigue of a 12%Cr low pressure turbine blade steel in simulated service environments, Int. J. Fatigue 27 (2005) 1499-1508. https://doi.org/10.1016/j.ijfatigue.2005.06.031
  17. Y. Yi, B. Lee, S. Kim, J. Jang, Corrosion and corrosion fatigue behaviors of 9Cr steel in a supercritical water condition, Mater. Sci. Eng. A 429 (2006) 161-168. https://doi.org/10.1016/j.msea.2006.05.035
  18. M.F. Chiang, M.C. Young, J.Y. Huang, Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments, J. Nucl. Mater. 411 (2011) 83-89. https://doi.org/10.1016/j.jnucmat.2011.01.035
  19. H. Cho, B.K. Kim, I.S. Kim, C. Jang, Low cycle fatigue behaviors of type 316LN austenitic stainless steel in $310^{\circ}C$ deaerated water-fatigue life and dislocation structure development, Mater. Sci. Eng. A 476 (2008) 248-256. https://doi.org/10.1016/j.msea.2007.07.023
  20. H. Sun, X. Wu, E. Han, Y. Wei, Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water, Corros. Sci. 59 (2012) 334-342. https://doi.org/10.1016/j.corsci.2012.03.022
  21. H. Sun, X. Wu, E. Han, Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution, Corros. Sci. 51 (2009) 2840-2847. https://doi.org/10.1016/j.corsci.2009.08.006
  22. J. Xu, X. Wu, E. Han, The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment, Electrochim. Acta 71 (2012) 219-226. https://doi.org/10.1016/j.electacta.2012.03.148
  23. W. Kuang, X. Wu, E. Han, The oxidation behaviour of 304 stainless steel in oxygenated high temperature water, Corros. Sci. 52 (2010) 4081-4087. https://doi.org/10.1016/j.corsci.2010.09.001
  24. M. Fulger, M. Mihalache, D. Ohai, S. Fulger, S.C. Valeca, Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment, J. Nucl. Mater. 415 (2011) 147-157. https://doi.org/10.1016/j.jnucmat.2011.05.007
  25. M.F. Montemor, M.G.S. Ferreira, N.E. Hakiki, M. Da Cunha Belo, Chemical composition and electronic structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments, Corros. Sci. 42 (2000) 1635-1650. https://doi.org/10.1016/S0010-938X(00)00012-3
  26. X. Cheng, Z. Feng, C. Li, C. Dong, X. Li, Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments, Electrochim. Acta 56 (2011) 5860-5865. https://doi.org/10.1016/j.electacta.2011.04.127
  27. D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5 (1972) 4709-4714. https://doi.org/10.1103/PhysRevB.5.4709
  28. J.F. Moulder, F.S. William, E.S. Peter, Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN, 1992.
  29. K. Obrtlik, J. Polak, M. Hajek, A. Vasek, Short fatigue crack behaviour in 316L stainless steel, Int. J. Fatigue 19 (1997) 471-475. https://doi.org/10.1016/S0142-1123(97)00005-4
  30. M. Kamaya, M. Kawakubo, Strain-based modeling of fatigue crack growth - an experimental approach for stainless steel, Int. J. Fatigue 44 (2012) 131-140. https://doi.org/10.1016/j.ijfatigue.2012.05.006
  31. A. El Bartali, V. Aubin, S. Degallaix, Fatigue damage analysis in a duplex stainless steel by digital image correlation technique, Fatigue Fract. Eng. M. 31 (2008) 137-151. https://doi.org/10.1111/j.1460-2695.2007.01207.x
  32. J.Y. Huang, M.C. Young, S.L. Jeng, J.J. Yeh, J.S. Huang, R.C. Kuo, Corrosion fatigue behavior of low alloy steels under simulated BWR coolant conditions, J. Nucl. Mater. 405 (2010) 17-27. https://doi.org/10.1016/j.jnucmat.2010.07.029
  33. Z. Zhang, H. Zhao, H. Zhang, Z. Yu, J. Hu, L. He, J. Li, Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection, Corros. Sci. 93 (2015) 120-125. https://doi.org/10.1016/j.corsci.2015.01.014
  34. M. Gholami, M. Hoseinpoor, M.H. Moayed, A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel, Corros. Sci. 94 (2015) 156-164. https://doi.org/10.1016/j.corsci.2015.01.054
  35. T. Magnin, C. Ramade, J. Lepinoux, L.P. Kubin, Low-cycle fatigue damage mechanisms of F.c.c. and B.c.c. polycrystals: homologous behaviour, Mater. Sci. Eng. A 118 (1989) 41-51. https://doi.org/10.1016/0921-5093(89)90056-7
  36. Y.Q. Wang, J. Han, B. Yang, X.T. Wang, Strengthening of ${\sigma}$ phase in a $Fe_{20}Cr_9Ni$ cast austenite stainless steel, Mater. Charact. 84 (2013) 120-125. https://doi.org/10.1016/j.matchar.2013.07.019
  37. T. Kruml, J. Polak, K. Obrtlik, S. Degallaix, Dislocation structures in the bands of localised cyclic plastic strain in austenitic 316L and austenitic-ferritic duplex stainless steels, Acta Mater 45 (1997) 5145-5151. https://doi.org/10.1016/S1359-6454(97)00178-X
  38. J. Man, T. Vystavel, A. Weidner, I. Kubena, M. Petrenec, T. Kruml, J. Polak, Study of cyclic strain localization and fatigue crack initiation using FIB technique, Int. J. Fatigue 39 (2012) 44-53. https://doi.org/10.1016/j.ijfatigue.2011.05.002
  39. I. Alvarez-Armas, U. Krupp, M. Balbi, S. Herenu, M.C. Marinelli, H. Knobbe, Growth of short cracks during low and high cycle fatigue in a duplex stainless steel, Int. J. Fatigue 41 (2012) 95-100. https://doi.org/10.1016/j.ijfatigue.2012.01.010
  40. M.C. Marinelli, U. Krupp, M. Kubbeler, S. Herenu, I. Alvarez-Armas, The effect of the embrittlement on the fatigue limit and crack propagation in a duplex stainless steel during high cycle fatigue, Eng. Fract. Mech. 110 (2013) 421-429. https://doi.org/10.1016/j.engfracmech.2013.03.034

Cited by

  1. Preliminary validation of a dynamic electrochemical biodegradation test bench in pseudo-physiological conditions vol.33, pp.2, 2017, https://doi.org/10.1080/10667857.2017.1416972
  2. Effect of milling on the microstructure and mechanical property of austenite stainless steel vol.62, pp.12, 2020, https://doi.org/10.3139/120.111603