DOI QR코드

DOI QR Code

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts

Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구

  • Sim, Jae-Wook (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
  • 심재욱 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2017.06.02
  • Accepted : 2017.07.12
  • Published : 2017.08.10

Abstract

Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

Polyethylene terephthalate (PET)는 화학적 안정성과 높은 기계적 강도를 가지고 있어 식품, 의류 등 다양한 분야에서 사용되고 있으며, 이로 인해 PET는 주요 폐플라스틱 폐기물 중 하나이다. 본 연구에서 PET를 재활용하기 위해 ethylene glycol (EG)와 glycolysis의 반응을 이용하여 단량체 회수에 관한 연구를 수행하였다. 마이크로 튜빙 반응기를 사용하여 EG/PET비율 1~4, 반응시간 15~90 min, 반응온도 $250{\sim}325^{\circ}C$에서 망간, 구리 촉매 조건하에서 연구를 진행하였다. 10 wt% $Cu/{\gamma}-Al_2O_3$ 촉매에서 반응온도, 시간과 EG/PET의 비가 각각 $300^{\circ}C$, 30 min와 1 : 2였을 때 가장 높은 89.46%의 bis (2-hydroxyethyl) terephthalate monomer (BHET) 수율을 나타내었다.

Keywords

References

  1. D.-E. Nikles and M.-S. Farahat, New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) Waste: A review, Macromol. Mater. Eng., 290, 13-30 (2005). https://doi.org/10.1002/mame.200400186
  2. C.-W. Neale, N.-C. Hilyard, and P. Barber, Observations on the economics of recycling industrial scrap plastic in new products, Conserv. Recycl., 6, 91-105 (1983). https://doi.org/10.1016/0361-3658(83)90034-6
  3. T.-I. Kim and K.-S. Kang, Trend on the development of commercial technology for feedstock recycling and high end products from PET wastes by the patent and paper analysis, J. Korean Inst. Resour. Recycl., 23, 68-79 (2014). https://doi.org/10.7844/kirr.2014.23.5.68
  4. M. Imran and D.-H. Kim, Sub- and supercritical glycolysis of polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), Polym. Degrad. Stab., 95, 1686-1693 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.05.026
  5. M. Imran, D. H. Kim, W. A. Al-Masry, A. Mahmood, A. Hassan, S. Haider, and S. M. Ramay, Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis, Polym. Degrad. Stab., 98, 904-915 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.01.007
  6. S.-S., Kim and S.-H. Kim, Pyrolysis kinetics of waste automobile lubricating oil, Fuel, 79, 1943-1949 (2000). https://doi.org/10.1016/S0016-2361(00)00028-4
  7. S.-S. Kim and F.-A. Agblevor, Pyrolysis characteristics and kinetics of chicken litter, Waste Manag., 27, 135-140 (2007). https://doi.org/10.1016/j.wasman.2006.01.012
  8. S.-S. Kim, J. Kim, Y. H. Park, and Y. W. Park, Pyrolysis kinetics and decomposition characteristics of pine trees, Bioresour. Technol., 101, 9797-9802 (2010). https://doi.org/10.1016/j.biortech.2010.07.094
  9. J.-L.-G. Fierro and J.-C. Conesa, Migration of molybdenum into intracrystalline cavities in molybdate-impregnated NaY zeolite, J. Catal., 108, 334-345 (1987). https://doi.org/10.1016/0021-9517(87)90182-5
  10. P. Leyrit and T. Cseri, Aromatic reduction properties of molybdenum sulfide clusters in HY zeolite, Catal. Today, 65, 249-256 (2001). https://doi.org/10.1016/S0920-5861(00)00594-0
  11. S.-S. Kim, H. V. Ly, G.-H. Choi, and J. Kim, H. C. Woo, Pyrolysis characteristics and kinetics of the alga Saccharina japonica, Bioresour. Technol., 123, 445-451 (2012). https://doi.org/10.1016/j.biortech.2012.07.097
  12. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7nd ed, 19-49, McGraw-Hill Education, NY, USA (2005).
  13. M. Imran and K. G. Lee, Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate, J. Nanosci. Nanotechnol., 11, 824-828 (2011). https://doi.org/10.1166/jnn.2011.3201
  14. S. S. Zumdahl, Chemistry, 7ed, 110-119, Brooks/Cole Pub Co, USA (2006).
  15. C.-H. Zhang and Y.-W. Li, Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper, J. Catal., 237, 405-415 (2006). https://doi.org/10.1016/j.jcat.2005.11.004

Cited by

  1. The effect of Kankara zeolite-Y-based catalyst on some physical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis vol.77, pp.3, 2017, https://doi.org/10.1007/s00289-019-02806-y
  2. Multiple Hydrogen Bonds Promote the Nonmetallic Degradation Process of Polyethylene Terephthalate with an Amino Acid Ionic Liquid Catalyst vol.60, pp.10, 2017, https://doi.org/10.1021/acs.iecr.0c06073