DOI QR코드

DOI QR Code

Finite Element Prediction of Deformation of Material due to Springback after Material Removal of a Forging

단조 후 소재 절삭에 따른 탄성회복 변형의 유한요소예측

  • Received : 2017.03.02
  • Accepted : 2017.06.23
  • Published : 2017.08.01

Abstract

In this paper, finite element prediction of deformation of material due to springback after material removal by an axisymmetric forging fabrication at room temperature is conducted. An elastoplastic finite element method is employed considering die plastic deformation. The predictions of a springback analysis conducted after the final stroke of an axisymmetric cold forging process containing residual stresses are utilized to be mapped onto the final material after the material removal. It is assumed that material removal occurs at an instant, i.e., all the material to be removed disappears at once. The predictions are compared with experiments, revealing strong qualitative agreement.

Keywords

References

  1. M. Kawaka, T. Kakita, A. Makinouchi, 1998, Simulation of Multi-step Sheet Metal Forming Processes by a Static Explicit FEM Code, J. Mater. Process. Technol., Vol. 80, pp. 54-59.
  2. Y. E. Ling, H. P. Lee, B. T. Cheok, 2005, Finite Element Analysis of Spring Back in L-bending of Sheet Metal, J. Mat. Proc. Tech., Vol. 168, No. 2, pp. 296-302. https://doi.org/10.1016/j.jmatprotec.2005.02.236
  3. R. Bahloul, S. Ben-Elechi, A. Potiron, 2006, Optimization of Springback Predicted by Experimental and Numerical Approach by using Response Surface Methodology, J. Mat. Proc. Tehc., Vol. 173, No. 1, pp. 101-110. https://doi.org/10.1016/j.jmatprotec.2005.11.009
  4. J. S. Park, H. J. Choi, S. H. Kim, 2014, Improvement in Prediction Accuracy of Springback for Stamping CAE Considering Tool Deformation, Trans. Mater. Process., Vol. 23, No. 6, pp. 380-384. https://doi.org/10.5228/KSTP.2014.23.6.380
  5. M. K. Choi, H. Huh, 2012, Investigation of Springback Behavior of DP780 Steel Sheets after the U-bending Process, Trans. Mater. Process., Vol. 21, No. 6, pp. 384-388. https://doi.org/10.5228/KSTP.2012.21.6.384
  6. S. H. Kwon, H. S. Lee, Y. S. Lee, S. W. Kim, C. Y . Jung, S. M. Hong, 2016, Compensation Design to Reduce Springback in Sheet Metal Forming of 1.2 GPa Ultra High Strength Steel, Trans. Master. Process., Vol. 25, No. 5, pp. 301-305. https://doi.org/10.5228/KSTP.2016.25.5.301
  7. J. B. Yang, B. H. Jeon, S. I. Oh, 2000, A Study of the Springback Reduction in Aluminium Sheet Forming using Response Surface Method, Trans. Mater. Process., Vol. 9, No. 5, pp. 526-530.
  8. J. W. Cho, W. J. Chung, 1997, On the Springback Analysis of Sheet Metal Forming, Trans. Master. Process., Vol. 6. No. 5, pp. 386-391.
  9. H. Y. Kim, S. C. Choi, H. S. Lee, H. J. Kim, K. T. Lee, 2007, Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature, Trans. Master. Process., Vol. 16, No. 5, pp. 364-368. https://doi.org/10.5228/KSPP.2007.16.5.364
  10. H. S. Son, Y. S. Kim, 2003, Analysis of Formability and Plastic Instability in Sheet Metals (I), Trans. Master. Process., Vol. 12, No. 3, pp. 184-193. https://doi.org/10.5228/KSPP.2003.12.3.184
  11. Y. S. Lee, M. C. Kim, Y. N. Kwon, J. H Lee, 2004, Experimental and FE Analysis to Improve the Accuracy of Springback Prediction on Sheet Metal Forming, Trans. Master. Process., Vol. 13, No. 6, pp. 490-496. https://doi.org/10.5228/KSPP.2004.13.6.490
  12. Y. S. Lee, W. J. Chung, M. S. Joun, 2015, Proc. 13th Asian Symposium on Precision Forging (ASPF2015), Gyeongju, Korea, pp. 104-105.
  13. AFDEX, 2005, http://www.afdex.com