DOI QR코드

DOI QR Code

Enhancement of Antioxidant Activities of Crataegus pinnatifida Bunge Fruit by Ultrasonification Extraction Processes

초음파추출 공정을 이용한 아가위나무 열매의 항산화 활성 증진

  • 박성진 (한림성심대학교 관광외식조리과) ;
  • 권성필 ((주)제이앤팜유한책임회사) ;
  • 나영아 (을지대학교 식품산업외식학과)
  • Received : 2017.04.12
  • Accepted : 2017.06.28
  • Published : 2017.07.31

Abstract

This study was performed to investigate enhancement of antioxidant activities of Crataegus pinnatifida Bunge fruit by different extraction processes. Extracts were SE (stirrer extraction; 70% ethanol extract at $25^{\circ}C$, control), RE (reflux extraction at $60^{\circ}C$), and USE (ultrasonification for 3 h at $60^{\circ}C$ with 70% ethanol), respectively. Compared to SE, total phenolic and flavonoid contents in USE increased to 104.03% and 302.4%, respectively. USE showed the highest activity at 1.0 mg/mL concentration for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. Our results suggest that extracts from the ultrasonification process have relatively high antioxidative activities, and that fruit of Crataegus pinnatifida Bunge could be considered as a candidate functional antioxidant agents. These results would be useful for chemical and biological studies on natural plants and its products.

본 연구에서는 아가위나무 열매를 초음파 공정과 기존의 추출 공정을 비교하여 항산화 증진효과에 대해 연구하였다. 초음파 공정이 기존의 추출공정과 비교해 추출수율이 높게 나타났으며 이는 많은 유용활성 성분이 용출된 것으로 생각된다. 또한, 총 페놀 함량에서는 상온교반추출물보다 초음파 공정을 거친 추출물이 약 2배 정도의 함량 증가를 보였으며, 총 플라보노이드에서도 함량의 증가를 확인하였다. 이러한 결과를 바탕으로 초음파 고정을 이용해 활성물질들의 파괴없이 초음파의 높은 에너지로 인하여 더 많은 활성물질들을 추출하여 효능의 증대가 이루어질 것으로 생각된다. 따라서 실제적인 천연물 추출공정에서도 유용성분의 초음파추출은 많은 실험을 통하여 확인해야 할 것이며, frequency(kHz)와 intensity(Watt)의 조절, 시간(min)과 온도($^{\circ}C$) 그리고 시료의 형태에 따라 추출효율 및 유용성분의 영향은 다양한 변수에 의하여 편차가 클 것으로 생각된다. 따라서 본 연구에서 수행된 아가위나무 열매의 추출가공 연구는 식품 및 소재 개발 시 기초자료로 이용될 수 있으며 기능성 소재 연구에 충분한 가치가 있다고 판단된다.

Keywords

References

  1. Hong SS, Hwang JS, Lee SA, Han XH, Ro JS, Lee KS. 2002. Inhibitors of monoamine oxidase activity from the fruits of Crataegus pinnatifida Bunge. Kor J Pharmacogn 33: 285-290.
  2. Kwon HJ, Hyun SH, Choung SY. 2005. Traditional Chinese Medicine improves dysfunction of peroxisome proliferatoractivated receptor ${\alpha}$ and microsomal triglyceride transfer protein on abnormalities in lipid metabolism in ethanol-fed rats. Biofactors 23: 163-176. https://doi.org/10.1002/biof.5520230305
  3. Chu CY, Lee MJ, Liao CL, Lin WL, Yin YF, Tseng TH. 2003. Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on low-density lipoprotein (LDL) oxidation in cell and cell-free systems. J Agric Food Chem 51: 7583-7588. https://doi.org/10.1021/jf030407y
  4. Kim JS, Lee GD, Kwon JH, Yoon HS. 1993. Antioxidative effectiveness of ether extract in Crataegus pinnatifida Bunge and Terminalia chebula Retz. J Korean Agric Chem Soc 36: 203-207.
  5. Wang JM. 1985. Chinese herbal pharmacology. Shanghai Science & Technology Publisher, Shanghai, China. p 67-75.
  6. Kim JH, Kim MU, Cho YJ. 2007. Isolation and identification of inhibitory compound from Crataegi Fructus on ${\alpha}$-amylase and ${\alpha}$-glucosidase. J Korean Soc App Biol Chem 50: 204-209.
  7. Kim JS, Jeong SH. 2007. Quality characteristics of bread added with Crataegus pinnatifida Bunge powder. J East Asian Soc Diet Life 17: 125-129.
  8. Shin SJ, Yoon HH. 2011. Quality characteristics of Sansapyun with various amounts of Crataegi fructus concentrate. Korean J Culinary Res 17: 181-190.
  9. Lee SH, Jeong EJ, Jung TS, Park LY. 2009. Antioxidant activities of seasoning sauces prepared with Geranium thunbergii sieb. et Zucc. and Crataegi fructus and the quality changes of seasoned pork during storage. Korean J Food Sci Thechnol 41: 57-63.
  10. Wang RJ, Li DF, Bourne S. 1998. Can 2000 years of herbal medicine history help us solve problems in the year 2000?. In Biotechnology in the Feed Industry. Proceeding of Alltech's 14th Annual Symposium. Nottingham University Press, Nottingham, UK. p 273-291.
  11. Thannickal VJ, Fanburg BL. 2000. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279: L1005-1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
  12. Ahn BS, Kim JW, Kim HT, Lee SD, Lee KW. 2010. Antioxidant effects of Hovenia dulcis in the streptozotocin-induced diabetic rats. J Vet Clin 27: 366-373.
  13. Shin SL, Lee CH. 2011. Antioxidant activities of Ostrich fern by different extraction methods and solvents. J Life Sci 21: 56-61. https://doi.org/10.5352/JLS.2011.21.1.56
  14. Hwang IG, Woo KS, Jeong HS. 2011. Biological activity and heat treatment processing of foods. Food Science and Industry 44(3): 56-65.
  15. Kim JH, Sung NY, Kwon SK, Jung PM, Choi J, Yoon Y, Song BS, Yoon TY, Kee HJ, Lee JW. 2010. Antioxidant activity of stevia leaf extracts prepared by various extraction methods. J Korean Soc Food Sci Nutr 39: 313-318. https://doi.org/10.3746/jkfn.2010.39.2.313
  16. Earnshaw RG. 1998. Ultrasound: A new opportunity for food preservation. In Ultrasound in Food Processing. Povey MJW, Mason TJ, eds. Blackie Academic and Professional, London, UK. p 183-192.
  17. Lee KJ, Um BH. 2008. Extraction of useful component from natural plants using ultrasound system. Korean J Biotechnol Bioeng 23: 101-108.
  18. Esclapez MD, Garcia-Perez JV, Mulet A, Carcel JA. 2011. Ultrasound-assisted extraction of natural products. Food Eng Rev 3: 108-120. https://doi.org/10.1007/s12393-011-9036-6
  19. Ma YQ, Chen JC, Liu DH, Ye XQ. 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem 16: 57-62. https://doi.org/10.1016/j.ultsonch.2008.04.012
  20. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  21. Abdel-Hameed ESS. 2008. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem 114: 1271-1277.
  22. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  23. Kim YS, Choi JM. 2009. Physiochemical properties and dyeability of safflower colorants extracted by ultrasonic treatment. J Kor Soc Cloth Ind 11: 337-343
  24. Zhang QA, Zhang ZQ, Yue XF, Fan XH, Li T, Chen SF. 2009. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem 116: 513-518. https://doi.org/10.1016/j.foodchem.2009.02.071
  25. Kim BC, Kang SW, Chung CH, Heo HJ, Lee SC, Cho SH, Choi SG. 2010. Influence of ultrasonification on extraction yield and chemical property of green tea infusion. J Agric Life Sci 44: 91-99.
  26. Kim JH, Lee SH. 2016. Antioxidative and antimicrobial activities of Oenothera biennis extracted by different methods Korean J Food Preserv 23: 233-238. https://doi.org/10.11002/kjfp.2016.23.2.233
  27. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung Island. Korean J Food Sci Technol 37: 233-240.
  28. Zhao LC, He Y, Deng X, Xia XH, Liang J, Yang GL, Li W, Wang H. 2012. Ultrasound-assisted extraction of syringin from the bark of Ilex rotunda Thumb using response surface methodology. Int J Mol Sci 13: 7607-7616. https://doi.org/10.3390/ijms13067607
  29. Jeong JA, Kwon SH, Kim YJ, Shin CS, Lee CH. 2007. Investigation of antioxidative and tyrosinase inhibitory activities of the seed extracts. Korean J Plant Res 20: 177-184.
  30. Que F, Mao L, Zhu C, Xie G. 2006. Antioxidant properties of Chinese yellow wine, its concentrate and volatiles. LWT-Food Sci Technol 39: 111-117. https://doi.org/10.1016/j.lwt.2005.01.001