DOI QR코드

DOI QR Code

저분자 해양성 콜라겐과 γ-Aminobutyric Acid 생성 Lactobacillus brevis CFM20을 함유하는 이중코팅캡슐의 제조 및 특성

Preparation and Characterization of Double-Layered Coated Capsule Containing Low Molecular Marine Collagen and γ-Aminobutyric Acid Producing Lactobacillus brevis CFM20

  • 김선영 (충북대학교 식품생명.축산과학부) ;
  • 오도건 (충북대학교 식품생명.축산과학부) ;
  • 김광엽 (충북대학교 식품생명.축산과학부)
  • Kim, Sun-Yeong (Division of Food and Animal Science, Chungbuk National University) ;
  • Oh, Do-Geon (Division of Food and Animal Science, Chungbuk National University) ;
  • Kim, Kwang-Yup (Division of Food and Animal Science, Chungbuk National University)
  • 투고 : 2017.04.18
  • 심사 : 2017.06.23
  • 발행 : 2017.07.31

초록

본 연구는 저분자 해양성 콜라겐과 GABA 생성 L. brevis CFM20의 섭취 시 다양한 인체 장내 조건에 의한 유산균의 사멸과 콜라겐의 분해를 최소화하고자 진행되었다. 유산균과 저분자 해양성 콜라겐의 안정성을 향상하기 위하여 alginate와 chitosan을 이용하여 이중코팅캡슐을 제조하였다. L. brevis CFM20의 온도별 생육특성을 분석하여 캡슐화에 유리한 배양온도를 조사한 결과 $37^{\circ}C$에서 배양한 균의 대수기가 가장 빠르고 GABA양 또한 $400{\mu}g/mL$로 가장 높은 수치를 나타내어 생육속도에서 가장 유리한 것으로 나타났다. Calcium-alginate bead 법으로 캡슐을 제조한 결과 1~2 mm 사이의 일정한 구형의 캡슐을 제조하였으며, chitosan을 이용하여 이중코팅캡슐을 제조한 결과 캡슐의 크기가 감소하였고 외형적으로도 더욱 단단해짐을 확인하였다. 제조된 이중코팅캡슐을 CLSM과 SEM을 이용하여 관찰한 결과, chitosan 코팅을 한 이중코팅캡슐의 표면이 alginate와의 가교결합에 의해 더욱 치밀해짐을 확인하였다. 체내 위와 장내 조건에서 시간에 따른 이중코팅캡슐의 L. brevis CFM 20 생균수를 분석한 결과 캡슐화한 경우 균의 감소가 더디어 더 안정하다고 판단하였다. 이중코팅캡슐을 체내 위와 장내 조건에서 시간에 따른 GABA와 hydroxyproline의 용출량을 분석한 결과 두 경우 모두 위 조건에서는 낮은 수치를 나타내었고 장내 조건에서는 시간이 지남에 따라 급격하게 증가한 것을 확인하였다. 동물실험 결과 콜라겐 섭취군이 비섭취군에 비해 체중증가량, 혈청 지질 농도 등이 적은 것을 확인하였고, 혈액 내 hydroxyproline 함량, 진피의 피부조직 밀도가 더 높은 것으로 관찰되었다. 본 연구에서 개발된 이중코팅캡슐을 섭취하는 경우 위에서는 안정한 상태였다가 장에 도달한 후 붕해됨으로 인하여, 유산균, GABA, 콜라겐 및 키토산의 작용으로 인체에 유익한 효과를 기대할 수 있을 것으로 생각된다.

This study was performed to encapsulate low molecular weight marine collagen and ${\gamma}$-aminobutyric acid (GABA)-producing lactic acid bacteria to inhibit degradation and improve survival rate during exposure to adverse conditions of the gastro-intestinal tract. Calcium-alginate method was used for the manufacture of a double-layered coated capsule. The inner core material was composed of collagen and lactic acid bacteria, and the coating materials were alginate and chitosan. The sizes and shapes of the double-coated capsule were affected mainly by centrifuge speed and pH. Manufactured capsules were observed with a scanning electron microscope and by confocal laser scanning microscopy to confirm the micromorphological changes of capsules and bacterial cells. As a result, double-layered coated capsules were not degraded at pH 1.2, whereas degradation occurred at pH 7.4. In addition, GABA and collagen were maintained in stable state at pH 1.2. Therefore, double-layered coated capsules developed in this study would not be degraded in the stomach and could be stably delivered to the small intestine to benefit intestinal and dermatic health.

키워드

참고문헌

  1. Sannine WE, Muralidhara KS, Elliker PR, England DC. 1972. Lactic acid bacteria in food and health: a review with special reference to enteropathogenic Escherichia coli as well as certain enteric diseases and their treatment with antibiotics and lactobacilli. J Milk Food Technol 35: 691-702. https://doi.org/10.4315/0022-2747-35.12.691
  2. Gilliland SE. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol Rev 7: 175-188. https://doi.org/10.1111/j.1574-6941.1990.tb01683.x
  3. Isolauri E, Joensuu J, Suomalainen H, Luomala M, Vesikari T. 1995. Improved immunogenicity of oral D $\times$ RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine 13: 310-312. https://doi.org/10.1016/0264-410X(95)93319-5
  4. Kitazawa H, Matsumura K, Itoh T, Yamaguchi T. 1992. Interferon induction in murine peritoneal macrophage by stimulation with Lactobacillas acidophilus. Immunol 36: 311-315.
  5. Zheng HY, Alcorn TM, Cohen MS. 1994. Effect of $H_2O_2$-producing lactobacilli on Neisseria gonorrhoeae growth and catalase activity. J Infec Dis 170: 1209-1215. https://doi.org/10.1093/infdis/170.5.1209
  6. Fernandes CF, Shahani KM, Amer MA. 1987. Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol Lett 46: 343-356. https://doi.org/10.1111/j.1574-6968.1987.tb02471.x
  7. Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12: 39-85.
  8. Chang JS, Lee BS, Kim YG. 1992. Changes in ${\gamma}$-aminobutyric acid (GABA) and the main constituents by a treatment conditions and of anaerobically treated green tea leaves. Korean J Food Sci Technol 24: 315-319.
  9. Wang HF, Tsai YS, Lin ML, Ou AS. 2006. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem 96: 648-653. https://doi.org/10.1016/j.foodchem.2005.02.046
  10. Bai Q, Chai M, Gu Z, Cao X, Li Y, Liu K. 2009. Effects of components in culture medium on glutamate decarboxylase activity and ${\gamma}$-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem 116: 152-157. https://doi.org/10.1016/j.foodchem.2009.02.022
  11. Zhang H, Yao HY, Chen F. 2006. Accumulation of ${\gamma}$-aminobutyric acid in rice germ using protease. Biosci Biotechnol Biochem 70: 1160-1165. https://doi.org/10.1271/bbb.70.1160
  12. Cross ML. 2004. Immune-signaling by orally-delivered probiotic bacteria: effects on common mucosal immunoresponses and protection at distal mucosal sites. Int J Immunopathol Pharmacol 17: 127-134. https://doi.org/10.1177/039463200401700204
  13. Yokoyama S, Hiramatsu J, Hayakawa K. 2002. Production of ${\gamma}$-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J Biosci Bioeng 93: 95-97. https://doi.org/10.1016/S1389-1723(02)80061-5
  14. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. 2005. Production of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22: 497-504. https://doi.org/10.1016/j.fm.2005.01.002
  15. Cho YR, Chang JY, Chang HC. 2007. Production of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17: 104-109.
  16. Lee JH, Seo JH, Park YH, Kim WG, Lim KM, Lee SJ. 2008. The effect of hydroxyproline and Pro-Hyp dipeptide on UV-damaged skin of hairless mice. Korean J Food Sci Technol 40: 436-442.
  17. Jeong HS, Kwon MC, Han JG, Ha JH, Jin L, Kim JC, Kwak HG, Hwang BY, Lee HY. 2008. Enhancement of skin immune activation effect of collagen peptides isolated from Asterias amurensis. Korean J Food Sci Technol 40: 522-527.
  18. Maffei HV, Nóbrega FJ. 1975. Gastric pH and microflora of normal and diarrhaeic infants. Gut 16: 719-726. https://doi.org/10.1136/gut.16.9.719
  19. Lorca GL, Raya RR, Taranto MP, de Valdez GF. 1998. Adaptive acid tolerance response in Lactobacillus acidophilus. Biotechnol Lett 20: 239-241. https://doi.org/10.1023/A:1005369617313
  20. Morichi T. 1974. Preservation of lactic acid bacteria by freeze-drying. Jpn Agric Res Quart 8: 171-176.
  21. Park BG, Lee JH, Shin HK, Lee JH, Chang PS. 2006. Optimization of conditions for the double layer microencapsulation of lactic acid bacteria. Korean J Food Sci Technol 38: 767-772.
  22. Deeth HC. 1984. Yoghurt and cultured products. Aust J Dairy Technol 39: 111-113.
  23. Dziezak JD. 1988. Microencapsulation and encapsulated ingredients. Food Technol 42(4): 136-151.
  24. O’Sullivan MG, Thornton G, O’Sullivan GC, Collins JK. 1992. Probiotic bacteria: myth of reality?. Trends Food Sci Technol 3: 309-314. https://doi.org/10.1016/S0924-2244(10)80018-4
  25. Lim F, Moss RD. 1981. Microencapsulation of living cells and tissues. J Pharm Sci 70: 351-354. https://doi.org/10.1002/jps.2600700402
  26. Champagne CP, Gaudy C, Poncelet D, Neufeld RJ. 1992. Lactococcus lactis release from calcium alginate beads. Appl Environ Microbiol 58: 1429-1434.
  27. Yoo IK, Seong GH, Chang HN, Park JK. 1996. Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production. Enzyme Microbial Technol 19: 428-433. https://doi.org/10.1016/S0141-0229(96)00016-6
  28. Chang HN, Seong GH, Yoo IK, Park JK, Seo JH. 1996. Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules. Biotechnol Bioeng 51: 157-162. https://doi.org/10.1002/(SICI)1097-0290(19960720)51:2<157::AID-BIT4>3.0.CO;2-I
  29. Bartkowiak A, Hunkeler D. 2000. Alginate-oligochitosan microcapsules. II. Control of mechanical resistance and permeability of the membrane. Chem Mater 12: 206-212. https://doi.org/10.1021/cm991128m
  30. Zhang G, Bown AW. 1997. The rapid determination of ${\gamma}$- aminobutyric acid. Phytochem 44: 1007-1009. https://doi.org/10.1016/S0031-9422(96)00626-7
  31. Choi CY, Kang SK, Park SK, Jang MK, Nah JW. 2007. Preparation and characterization of lactic acid bacteria encapsuled with alginate microsphere. J Life Sci 17: 1754-1759. https://doi.org/10.5352/JLS.2007.17.12.1754
  32. Hassan AN, Frank JF, Farmer MA, Schmidt KA, Shalabi SI. 1995. Observation of encapsulated lactic acid bacteria using confocal scanning laser microscopy. J Dairy Sci 78: 2624-2628. https://doi.org/10.3168/jds.S0022-0302(95)76891-6
  33. Kim K, Jang KI, Kim CH, Kim KY. 2002. Optimization of culture conditions and encapsulation of Lactobacillus fermentum YL-3 for probiotics. Korean J Food Sci Technol 34: 255-262.
  34. Reddy GK, Enwemeka CS. 1996. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29: 225-229. https://doi.org/10.1016/0009-9120(96)00003-6