DOI QR코드

DOI QR Code

Growth of Three Sprout Vegetables and Absorption Characteristics of Vanadium according to Jeju Water Concentration

제주 Water 농축에 따른 3종 새싹채소의 생장 및 Vanadium의 흡수 특성

  • Park, Sung-Hwan (Hurum Central Research Institute) ;
  • Yun, Ji-Hyun (Hurum Central Research Institute) ;
  • Lee, Jin-Ha (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Cho, Ju-Hyun (Hurum Central Research Institute)
  • Received : 2017.05.22
  • Accepted : 2017.06.24
  • Published : 2017.07.31

Abstract

Vanadium is a trace mineral present in dietary sources, most commonly vegetables. The aim of this study was to investigate the growth and vanadium absorption characteristics of Brassica napus L., Fagopyrum esculentum, and Hordeum vulgare L. using different Jeju water concentrations. The growth of three sprout vegetables and absorption characteristics of vanadium were different depending on Jeju water concentration containing vanadium. In the case of B. napus L. and H. vulgare L., germination rate was inhibited by increasing Jeju water concentration, whereas in F. esculentum, the best germination rate (60.7 %) was obtained at 40 times concentration of Jeju water (vanadium, 1.34 mg/L). For the sprout growth, growth of shoots increased with increasing Jeju water concentration, but root growth was gradually inhibited by increasing Jeju water concentration. For the absorption of vanadium by Jeju water concentration, vanadium was not detected in H. vulgare L. The vanadium contents of B. napus L. and F. esculentum were 4.2 mg/kg and 2.9 mg/kg at 10 times concentration of Jeju water (vanadium, 0.46 mg/L), respectively.

제주 water를 농축하여 새싹유채, 메밀, 보리의 종자발아 영향과 생장 및 vanadium 흡수특성을 알아보고자 실험을 수행하였다. 제주 water를 배수별로 농축시킨 결과 vanadium 농도가 제주 water 원수, 10배, 20배, 40배 농축수에서 각각 0.05 mg/L, 0.46 mg/L, 0.80 mg/L, 1.34 mg/L의 함량을 보였다. Control(수도수)과 제주 water 원수, 10배, 20배, 40배 농축수를 사용하여 종자발아율 측정 시 새싹유채의 경우 control과 제주 water 원수, 10배 농축수까지 발아율은 차이를 보이지 않았으나 농축배수가 20배, 40배로 증가할수록 발아율이 감소하는 경향을 보였으며, 특히 40배 농축수에서 발아율이 control과 비교하여 약 50% 감소하였다. 새싹메밀의 경우 농축배수가 증가할수록 종자 발아율이 control 42.7%에서 40배 농축수 60.7%로 발아율이 증가하는 것이 확인되었다. 새싹보리의 경우 control의 발아율 88.8%와 40배 농축수로 처리한 발아율 79.0%를 비교 시소폭 감소한 결과를 보이며, 20배 농축수까지 큰 영향은 없는 것으로 확인되었다. 새싹채소 생장 영향을 알아보고자 control(수도수), 제주 water 원수(0.05 mg/L), 제주 water 10배 농축수(0.46 mg/L)로 7일간 재배하여 확인한 결과 새싹유채의 경우 vanadium 농도가 높아질수록 지상부 길이, 뿌리의 생장이 모두 억제되었으며, 생물 중량 및 건조물 중량 또한 control과 비교 시 10배 농축수로 재배한 조건에서 감소하였다. 새싹메밀의 경우 vanadium 농도가 증가함에 따라 지상부 길이의 생장이 증가하였지만, 지하부 뿌리의 생장은 역으로 생장이 억제되었고, 생물 중량 및 건조물 중량 또한 새싹유채와 동일하게 vanadium 농도가 증가할수록 감소하였다. 새싹보리의 경우 새싹메밀과 동일한 경향으로 제주 water 원수 처리 시 control과 비교하여 지상부 생장이 억제되었지만 10배 농축수 처리 시 지상부의 생장이 증가하였고 뿌리생장은 억제되었으며, 생물 중량 및 건조물 중량은 control 대비 10배 농축수에서 감소하였다. 또한, 새싹채소의 vanadium 흡수특성을 확인한 결과 공통적으로 새싹유채, 새싹메밀, 새싹보리 control에서 vanadium 함량은 검출한계 이하의 함량을 보였다. 새싹유채의 경우 제주 water 원수와 제주 water 10배 농축수에서 각각 1.4 mg/kg과 4.2 mg/kg으로 함량이 3배 정도 차이를 보이는 것을 확인할 수 있었고, 새싹메밀의 경우 제주 water 원수와 10배 농축수로 재배한 경우 vanadium의 함량이 각각 1.3 mg/kg, 2.9 mg/kg으로 새싹유채보다 낮은 함량을 갖는 것으로 확인되었다. 새싹보리의 경우 vanadium 함량은 본 연구에서 제주 water 원수, 10배 농축수 재배조건 모두 검출한계 이하의 함량을 보였다.

Keywords

References

  1. Ko SB, Hyun CS, Kang KW. 2011. A study on setting the direction of development for the functional and mixed drinks using the Jeju water. J Korea Acad Indust Coop Soc 12: 2133-2141.
  2. Moon SH, Lee HW, Ko KS. 2008. Concentration of vanadium in Jeju groundwater using reverse osmosis processes. Membrane J 18: 241-249.
  3. Linstedt KD, Kruger P. 1970. Determination of vanadium in natural waters by neutron activation analysis. Anal Chem 42: 113-115. https://doi.org/10.1021/ac60283a001
  4. Kitta T, Yamada S, Asakawa T, Ishihara K, Watanabe N, Ishiyama H, Watanabe Y. 2003. Effects of natural vanadium contained Mt. Fuji underground water on human hyperglycemia. Pharmacometrics 64: 77-84.
  5. Shechter Y, Karlish SJ. 1980. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284: 556-558. https://doi.org/10.1038/284556a0
  6. Tsiani E, Fantus IG. 1997. Vanadium compounds biological actions and potential as pharmacological agents. Trends Endocrinol Metab 8: 51-58. https://doi.org/10.1016/S1043-2760(96)00262-7
  7. Goldwaser I, Gefel D, Gershonov E, Fridkin M, Shechter Y. 2000. Insulin-like effects of vanadium: basic and clinical implications. J Inorg Biochem 80: 21-25. https://doi.org/10.1016/S0162-0134(00)00035-0
  8. Thompson HJ, Chasteen ND, Meeker LD. 1984. Dietary vanadyl (IV) sulfate inhibits chemically-induced mammary carcinogenesis. Carcinogenesis 15: 849-851.
  9. Piper BF, Dibble SL, Dodd MJ, Weiss MC, Slaughter RE, Paul SM. 1998. The revised Piper Fatigue Scale: psychometric evaluation in women with breast cancer. Oncol Nurs Forum 25: 677-684.
  10. Zheng HM, Kim DH, Lee SH, Kim KS, Yoo HS. 2012. Effects of vanadium water on cancer-related fatigue of non advanced thyroid cancer patients: Randomized, three armed, triple blinded controlled trial. The Journal of Daejeon Oriental Medicine 20: 79-89.
  11. Cheong YH, Han MJ, Sung SJ, Seo DC, Kang JG, Sohn BK, Heo JS, Cho JS. 2009. Effects of selenium supplement on germination, sprout growth and selenium uptake in four vegetables. Korean J Environ Agric 28: 179-185. https://doi.org/10.5338/KJEA.2009.28.2.179
  12. Han MJ, Kim SU, Seo DC, Cheong YH, Lee DJ, Park MS, Rim YS, Shon BK, Heo JS, Cho JS. 2007. Uptake properties of germanium to vegetable plants and its effect on seed germination and on early stage growth. Korean J Environ Agric 26: 217-222. https://doi.org/10.5338/KJEA.2007.26.3.217
  13. Mao X, Zhang L, Xia Q, Sun Z, Zhao X, Cai H, Yang X, Xia Z, Tang Y. 2008. Vanadium-enriched chickpea sprout ameliorated hyperglycemia and impaired memory in streptozotocin-induced diabetes rats. Biometals 21: 563-570. https://doi.org/10.1007/s10534-008-9142-y
  14. Cha BC, Kim MD, Ryu HS. 2011. Effect of vitamin C, germanium oxide and selenium treatment on the during cultivation of sprouts. Korean J Food Nutr 24: 226-232. https://doi.org/10.9799/ksfan.2011.24.2.226
  15. Aref IM, El-Juhany LI, Elkhalifa KF. 2004. Effects of sodium chloride concentrations on seed germination of Acacia nilotica ssp. tomentosa and Acacia gerrardii var. najdensis. J Advan Agric Res 9: 33-41.
  16. Tobe K, Li X, Omasa K. 2004. Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Sci Res 14: 345-353. https://doi.org/10.1079/SSR2004188
  17. Zhang L, Mao X, Xia Z. 2012. Effects of sodium metavanadate and germination on the sprouting of chickpeas and its content of vanadium, formononetin and biochanin A in the sprouts. J Diet Suppl 9: 34-44. https://doi.org/10.3109/19390211.2011.639858
  18. Vachirapatama N, Jirakiattikul Y, Dicinoski G, Townsend AT, Haddad PR. 2011. Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin J Sci Technol 33: 255-261.
  19. Cho WG. 2010. Anti-oxidative activity and trace component of a sprout serum. J Korean Oil Chem Soc 27: 14-19.