DOI QR코드

DOI QR Code

Spatial Data Structure for Efficient Representation of Very Large Sparse Volume Data for 3D Reconstruction

3차원 복원을 위한 대용량 희소 볼륨 데이터의 효율적인 저장을 위한 공간자료구조

  • An, Jae Pung (Department of Computer Science and Engineering, Sogang University) ;
  • Shin, Seungmi (Department of Computer Science and Engineering, Sogang University) ;
  • Seo, Woong (Department of Computer Science and Engineering, Sogang University) ;
  • Ihm, Insung (Department of Computer Science and Engineering, Sogang University)
  • 안재풍 (서강대학교 컴퓨터공학과) ;
  • 신승미 (서강대학교 컴퓨터공학과) ;
  • 서웅 (서강대학교 컴퓨터공학과) ;
  • 임인성 (서강대학교 컴퓨터공학과)
  • Received : 2017.06.24
  • Accepted : 2017.07.06
  • Published : 2017.07.14

Abstract

When a fixed-sized memory allocation method is used for sparse volume data, a considerable memory space is in general wasted, which becomes more serious for a large volume of high resolution. In this paper, in order to reduce such unnecessary memory consumption, we propose a volume representation method to store mostly voxels that represent valid information rather than all voxels in a fixed volume space. Then our method is compared with the conventional static memory allocation method, an octree-based representation, and a voxel hashing method in terms of memory usage and computation speed. In particular, we compare the proposed method and the voxel hashing method with respect to implementation of the GPU-based Marching Cubes algorithm.

일반적으로 희소 볼륨 데이터에 대하여 고정적인 메모리 할당 방식을 사용할 경우 상당한 메모리 공간 낭비가 발생하며, 이는 대용량의 고해상도 볼륨 데이터의 경우 더 심각한 문제가 발생한다. 본 논문에서는 이러한 불필요한 메모리 낭비를 개선하기 위하여 고정적인 메모리 공간이 아닌, 유효한 정보가 저장된 복셀 만을 효과적으로 저장하는 볼륨 데이터 표현 방법을 제안하고, 이를 기존의 정적인 메모리 할당 방법, 팔진 트리 그리고 복셀 해싱 방법과 메모리 사용량 및 연산 속도 측면에서 비교 분석한다. 특히 GPU 기반의 마칭 큐브 방법의 구현에 있어 본 논문에서 제안하는 방법과 복셀 해싱 방법을 비교 분석 한다.

Keywords

References

  1. W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3d surface construction algorithm," SIGGRAPH Comput. Graph., Vol. 21, No. 4, pp. 163-169, Jul. 1987. https://doi.org/10.1145/37402.37422
  2. M. Niessner, M. Zollhofer, S. Izadi, and M. Stamminger. "Real-time 3d reconstruction at scale using voxel hashing," ACM Trans. Graph., Vol. 32, No. 6, pp. 169:1-169:11, Nov. 2013.
  3. J. Chen, D. Bautembach, and S. Izadi. "Scalable real-time volumetric surface reconstruction," ACM Trans. Graph., Vol. 32, No. 4, pp. 113:1-113:16, Jul. 2013.
  4. M. Labschutz, S. Bruckner, M. E. Groller, M. Hadwiger, and P. Rautek, "JiTTree: a just-in-time compiled sparse GPU volume data structure," IEEE transactions on visualization and computer graphics, Vol. 22, No. 1, pp. 1025-1034, Jan. 2016. https://doi.org/10.1109/TVCG.2015.2467331
  5. M. M. Hossain, T. M. Tucker, T. R. Kurfess, and R. W. Vuduc, "Hybrid Dynamic Trees for Extreme-Resolution 3D Sparse Data Modeling," Proc. of 2016 IEEE International Parallel and Distributed Processing Symposium, pp. 132-141, 2016.
  6. D. J. Meagher, Octree encoding: A new technique for the representation, manipulation, and display of arbitrary 3-D objects by computer, Rensselaer Polytechnic Institute, 1980.
  7. A. Knoll, I. Wald, S. Parker, and C. Hansen. "Interactive isosurface ray tracing of large octree volumes," Proc. of 2006 IEEE Symposium on Interactive Ray Tracing, pp. 115-124, 2003.
  8. A. G. Konheim, Hashing in Computer Science: Fifty Years of Slicing and Dicing, Wiley, 2010.
  9. M. Teschner, B. Heidelberger, M. Muller, D. Pomerantes, and M. Gross, "Optimized spatial hashing for collision detection of deformable objects," Proc. of Vision, Modeling, Visualization VMV'03, pp. 47-54, 2003.
  10. NVIDIA "CUDA Toolkit Documentation v7.5" https://developer.nvidia.com/cuda-zone, 2015