Abstract
When a fixed-sized memory allocation method is used for sparse volume data, a considerable memory space is in general wasted, which becomes more serious for a large volume of high resolution. In this paper, in order to reduce such unnecessary memory consumption, we propose a volume representation method to store mostly voxels that represent valid information rather than all voxels in a fixed volume space. Then our method is compared with the conventional static memory allocation method, an octree-based representation, and a voxel hashing method in terms of memory usage and computation speed. In particular, we compare the proposed method and the voxel hashing method with respect to implementation of the GPU-based Marching Cubes algorithm.
일반적으로 희소 볼륨 데이터에 대하여 고정적인 메모리 할당 방식을 사용할 경우 상당한 메모리 공간 낭비가 발생하며, 이는 대용량의 고해상도 볼륨 데이터의 경우 더 심각한 문제가 발생한다. 본 논문에서는 이러한 불필요한 메모리 낭비를 개선하기 위하여 고정적인 메모리 공간이 아닌, 유효한 정보가 저장된 복셀 만을 효과적으로 저장하는 볼륨 데이터 표현 방법을 제안하고, 이를 기존의 정적인 메모리 할당 방법, 팔진 트리 그리고 복셀 해싱 방법과 메모리 사용량 및 연산 속도 측면에서 비교 분석한다. 특히 GPU 기반의 마칭 큐브 방법의 구현에 있어 본 논문에서 제안하는 방법과 복셀 해싱 방법을 비교 분석 한다.