DOI QR코드

DOI QR Code

Biochemical Properties and Physiological Functions of Plant β-D-fructofuranosidase

식물 β-D-fructofuranosidase의 화학적 성질과 생리적 기능

  • Received : 2017.07.16
  • Accepted : 2017.07.25
  • Published : 2017.07.30

Abstract

The ${\beta}$-D-fructofuranosidase (EC 3.2.1.26) is an important enzyme from a historical point of view, discovered by French biologist Berthelot in 1860 and was first used to study enzymology. ${\beta}$-D-fructosfuranosidase catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Four biochemical subgroups of ${\beta}$-D-fructofuranosidase have been investigated in plants. There are vacuolar (soluble acid), cytoplasmic (soluble alkaline), membrane-bound (insoluble alkaline), and cell wall-bound (insoluble acid) ${\beta}$-D-fructofuranosidase by purification. Their biochemical characteristics are distinct. It suggested that those enzymes might be different gene products. The contribution of each of these enzymes to sucrose management in the plant is likely to be correlated with their localization. Common localization in developing cells in tissues from a range of developmental stages and plant parts suggests that all of the isoforms may be closely involved in nutrient transport. The ${\beta}$-D-fructofuranosidases were most commonly found associated with maturing tissues in developing fruits, leaves, and roots. The ${\beta}$-D-fructofuranosidase activity varies in the relationship between growth and expansion through cell division, development of storage organs and tissues, and the relationship of plant defense responses. It is necessary to summarize more researches in order to know the definite physiological function.

역사적인 관점에서 ${\beta}$-D-fructofuranosidase (EC 3.2.1.26)는 1860년 프랑스 생물학자 Berthelot에 의해서 발견된 중요한 효소이며, 효소학을 연구하기 위해 처음 사용되었다. ${\beta}$-D-fructosfuranosidase는 sucrose가 D-glucose와 D-fructose로 가수 분해되는 것을 촉매 한다. 4 종류의 생화학 하위 그룹으로 나누어지는 ${\beta}$-D-fructofuranosidase가 식물에서 조사되었다. 정제 방법에 의해서 액상(수용성 산성), 세포질(가용성 알칼리), 막 결합(불용성 알칼리) 그리고 세포벽 결합(불용성 산성) ${\beta}$-D-fructosfuranosidase가 있다. 그들의 생화학적 특징은 뚜렷하다. 그것은 그 효소가 다른 유전자 산물일 가능성을 제시한다. 식물에서 자당을 분배하기 위한 이들 효소의 기여도는 위치한 장소와 상관 관계가 있는 것으로 보인다. 식물의 다양한 발달 단계 그리고 다양한 부분에서, 조직내의 세포를 발달시키는 공통적인 위치의 장소에 모든 동위효소들이 영양분 수송과 밀접하게 관련 되어 있음을 제시한다. ${\beta}$-D-fructosfuranosidase는 과일, 잎, 뿌리가 발달, 조직의 성숙 과 관련되어 가장 빈번하게 발견되었다. 그리고 ${\beta}$-D-fructosfuranosidase 활성은 세포 분열, 저장 기관 및 조직의 발달, 식물 방어 반응의 관계를 통해 성장과 확장 사이의 관계에 따라 그 활성의 차이가 다양하다. 명확한 생리 기능을 파악하기 위해서는 더 많은 연구를 종합 할 필요가 있다.

Keywords

References

  1. ap Rees, T. 1988.Hexose Phosphate Metabolism by Nonphotosynthetic Tissues of Higher Plants. In: The biochemistry of Plants: Carbohydrates. Vol. 14, Academic Press, 1-84.
  2. Bihmidine, S., Hunter, C. T. III., Johns, C. E., Koch, K. E. and Braun, D. M. 2013. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front. Plant Sci. 4, 177.
  3. burch, L. R., Davies, H. V., Cuthbert, E. M., Machray, G. C., Hedley, P. and Waugh, R. 1992. Purification of soluble invertase from potato. Phytochemistry 31, 1901-1904. https://doi.org/10.1016/0031-9422(92)80331-8
  4. burch, L. R., Davies, H. V., Ross, H. A., Machray, G. C., Hedley, P. and Waugh, R. 1994. Processing of a 58,000 MW invertase from potato tubers. Phytochemistry 35, 579-582. https://doi.org/10.1016/S0031-9422(00)90564-8
  5. Cardin, C. E., Leloir, L. F. and Chiriboga, J. 1955. The biosynthesis of sucrose. J. Biol. Chem. 214, 149-155.
  6. Chen, J. Q. and black, C. C. 1992. biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Archives Biochem. Biophy. 295, 61-69. https://doi.org/10.1016/0003-9861(92)90488-I
  7. Chen, Z., Gao, K., Su, X., Rao, P. and An, X. 2015. Genomewide identification of the invertase gene family in Populus. PLoS One 10, e0138540. https://doi.org/10.1371/journal.pone.0138540
  8. Contesini, F. J, Figueira ,J. A., Kawaguti, H. Y., Fernandes, P. C. B., Carvalho, P. O., Nascimento, M. G. and Sato, H. H. 2013. Potential Applications of Carbohydrases Immobilization in the Food Industry. Int. J. Mol. Sci. 14, 1335-1369 https://doi.org/10.3390/ijms14011335
  9. Dahlqvist, A. 1984. Methods of enzymatic analysis. Vol. 4. Verlag Chimie GmbH Weinheim 208-217.
  10. Doehlert, D. C. and Felker, F. C. 1987. Charaterization and distribution of invertase activity in developing maize (Zea mays) kernels. Physiol. Plant. 70, 51-57. https://doi.org/10.1111/j.1399-3054.1987.tb08695.x
  11. Elliott, K. J., Butler, W. O., Dickinson, C. D., Konno, Y., Vedvick, T., Fitzmaurice, L. and Mirkov, T. E. 1993. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol. Biol. 21, 515-524. https://doi.org/10.1007/BF00028808
  12. Esmon, P. C., Esmon, B. E., Schauer, I. E., Yaylor, A. and Schekman, R. 1987. Structure, assembly, and secretion of octameric invertase. J. Biol. Chem. 262, 4387-4394.
  13. Eschrich, W. 1980. Free space invertase, its possible roles in phloem unloading. Ber. Deutsch. Bot. Ges. Bd. 93, 363-378.
  14. Fahrendorf, T. and Beck, E. 1990. Cytosolic and cell-wallbound acid invertases from leaves of Urtica dioica: a comparison. Planta 180, 237-244.
  15. Faye, L., berjonneau, C. and Rollin, P. 1981. Studies on ${\beta}$-fructosidase from radish seedlings. I.Purification and partial characterization. Plant Sci. Lett. 22, 77-87. https://doi.org/10.1016/0304-4211(81)90284-4
  16. Faye, L. and Ghorbel, A. 1983. Studies on ${\beta}$-fructosidase from radish seedlings. II. biochemical and immuno-cytochemical evidence for cell wall-bound forms in vivo. Plant Sci. Lett. 29, 33-48. https://doi.org/10.1016/0304-4211(83)90021-4
  17. Fischer, G. and Schmid, F. X. 1990. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemisty 29, 2205-2212. https://doi.org/10.1021/bi00461a001
  18. Florkin, M. and Stotz, E. M. 1973. Enzyme Nomenclature. Comprehensive biochem. Vol 13. Amsterdam. Elsevier.
  19. Frommer, W. b. and Sonnewald, U. 1995. Molecular analysis of carbon partitioning in solanaceous species. J. Exp. Bot. 46, 587-607. https://doi.org/10.1093/jxb/46.6.587
  20. Giaquinta, R. 1979. Sucrose translocation and storage in the sugar beet. Plant Physiol. 63, 828-832. https://doi.org/10.1104/pp.63.5.828
  21. Isla, M. I., Salerno, G., Points, H., Vattuone, M. A. and Sampietro, A. R.1995. Purification and properties of the soluble acid invertase from Oryza sativa. Phytochemistry 38, 321-325. https://doi.org/10.1016/0031-9422(94)00613-X
  22. Kato, T. and Kubota, S. 1978. Properties of invertases in sugar storage tissues of citrus fruit and changes in their activities during maturation. Physiol. Plant. 42, 67-72. https://doi.org/10.1111/j.1399-3054.1978.tb01541.x
  23. Kern, G., Schulke, N., Schmid, F. X. and Jaenicke, R. 1992. Stability, quaternary structure, and folding of internal, external, and core-glycosylated invertase from yeast. Protein Sci. 1, 120-131.
  24. Kim, D., Park, S., Chung, Y., Park, J., Lee, S. and Lee, T. K. 2010. biochemical characterization of soluble acid and alkaline invertases from shoots of etiolated pea seedlings. J. Integr. Plant Biol. 52, 536-548. https://doi.org/10.1111/j.1744-7909.2010.00937.x
  25. Kim, D., Lee, G., Chang, M., Park, J., Chung, Y., Lee, S. and Lee, T. K. 2011. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings. J. Agric. Food Chem. 59, 11228-11233. https://doi.org/10.1021/jf201057c
  26. Kim, D. 2015. Characterization of neutral invertase from fast growing pea (Pisum sativum L.) seedlings after Gibberellic Acid (GA) treatment. J. Life Sci. 25,1021-1026. https://doi.org/10.5352/JLS.2015.25.9.1021
  27. Kim, D. and Lee, T. K. 2015. Immunolocalization of woundinducible insoluble acid invertases in pea (Pisum sativum L). J. Kor. Acad.-Ind. Coop. Soc. 16, 6425-6431
  28. Kocal, N., Sonnewald, U. and Sonnewald, S. 2008. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol. 148, 1523-1536. https://doi.org/10.1104/pp.108.127977
  29. Konno, Y., Vedvick, T., Fitzmaurice, L. and Mirkov, T. E. 1993. Purification, characterization, and subcellular localization of soluble invertase from tomato fruit. J. Plant Physiol. 141, 385-392. https://doi.org/10.1016/S0176-1617(11)80183-5
  30. Krishnan, H. B. and Pueppke, S. G. 1988. Invertases from rust-infected wheat leaves. J. Plant Physiol. 133, 336-339. https://doi.org/10.1016/S0176-1617(88)80211-6
  31. Lampen, J. O. 1971. In the Enzymes. Vol. 5. New York, Academic Press, pps 291-305.
  32. Lauriere, C., Lauriere, M., Sturm, A., Faye, L. and Chrispeels, M. J. 1988. Characterization of ${\beta}$-fructosidase, an extracellular glycoprotein of carrot cells. Biochimie 70, 1483-1491. https://doi.org/10.1016/0300-9084(88)90285-4
  33. Lee, H. and Sturm, A. 1996. Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol. 112, 1513-1522 https://doi.org/10.1104/pp.112.4.1513
  34. Lowell, C. A., Tomlinson, P. T. and Koch, K. E. 1989. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 90, 1394-1402. https://doi.org/10.1104/pp.90.4.1394
  35. Madore, M. A. and Lucas, W. J. 1995. Carbon partitioning and source-sink interactions in plants. Current topics in plant physiology: Amer. Soc. Plant Physiol. Ser. 13, 1-287.
  36. Michaud, D., Seye, A., Driouich, A. and Faye, L. 1993. Purification and partial characterization of an acid b-fructosidase from sweet-pepper (Capsicum annuum L.) fruit. Planta 194, 308-315.
  37. Miller, W. B. and Ranwala, A. P. 1994. Characterization and localization of three soluble invertase forms from Lilium longiflorum flower buds. Physiol. Planta. 92, 247-253. https://doi.org/10.1111/j.1399-3054.1994.tb05333.x
  38. Milling, R. J., Hall, J. L. and Leigh, R. A. 1993. Purification of an acid invertase from washed discs of storage roots of red beet (beta vulgaris L.). J. Exp. Bot. 268, 1679-1686.
  39. Morell, M. and Copeland, L. 1984. Enzymes of sucrose breakdown in soybean nodules. Plant Physiol. 74, 1030-1034. https://doi.org/10.1104/pp.74.4.1030
  40. Morris, D. A. and Arthur, E. D. 1984. Invertase and auxin-induced elongation in internodal segments of Phaseolus vulgaris. Phytochemistry 23, 2163-2167. https://doi.org/10.1016/S0031-9422(00)80512-9
  41. Nakajima, H., Hirata, A., Ogawa, Y., Yonehara, T., Yoda, K. and Yamasaki, M. 1991. A cytoskeleton-related gene, USO1, is required for intracellular protein transport in Saccharomyces cerevisiae. J. Cell Biol. 113, 245-260. https://doi.org/10.1083/jcb.113.2.245
  42. Neuberg, C. and Mandl, I. 1960. Invertase. In: The Enzymes. Vol. 4. (Eds: Sumner, J.b., Myrback, K.). New York. Academic Press.
  43. Neumann, N. P. and Lampen, J. O. 1967. Purification and properties of yeast invertase. Biochemistry 6, 468-475. https://doi.org/10.1021/bi00854a015
  44. Obenland, D. M., Simmen, U., boller, T. and Wiemken, A. 1993. Purification and characterization of three soluble invertases from barley (Hordeum vulgare L.) leaves. Plant Physiol. 101, 1331-1339. https://doi.org/10.1104/pp.101.4.1331
  45. Ranwala, A. P., Iwanami, S. S. and Masuda, H. 1991. Acid and neutral invertases in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit. Plant Physiol. 96, 881-886. https://doi.org/10.1104/pp.96.3.881
  46. Ranwala, A. P., Suematsu, C. and Masuda, H. 1992. Soluble and wall-bound invertases in strawberry fruit. Plant Sci. 84, 59-64. https://doi.org/10.1016/0168-9452(92)90208-4
  47. Ricardo, C. P. P. and ap Rees, T. 1970. Invertase activity during the development of carrot roots. Phytochemistry 9, 239-247. https://doi.org/10.1016/S0031-9422(00)85130-4
  48. Robinson, E. and Brown, R. 1952. The development of the enzyme complement in growing root cells. J. Exp. Bot. 3, 356-374 https://doi.org/10.1093/jxb/3.3.356
  49. Roitsch, T. and Tanner, W. 1996. Cell wall invertases: bridging the gap. Botanica Acta 109, 90-93. https://doi.org/10.1111/j.1438-8677.1996.tb00547.x
  50. Ross, H. A., McRae, D. and Davies, H. V. 1996. Sucrolytic enzyme activities in cotyledons of Vicia faba L.: developmental changes and purification of alkaline invertase. Plant Physiol. 111, 329-338. https://doi.org/10.1104/pp.111.1.329
  51. Salisbury, F. B. and Ross, C. W. 1992. Plant Physiol. 4th ed. belmont, CA., Wadsworth.
  52. Santi, S., De Marco, F., Polizzotto, R., Grisan, S. and Musetti, R. 2013. Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Front Plant Sci. 4, 171.
  53. Schaffer, A. A. 1986. Invertases in young and mature leaves of Citrus sinensis. Phytochemistry 25, 2275-2277. https://doi.org/10.1016/S0031-9422(00)81678-7
  54. Sonnewald, S., Priller, J. P., Schuster, J., Glickmann, E., Hajirezaei, M. R. and Siebig, S. 2012. Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS One 7, e51763. https://doi.org/10.1371/journal.pone.0051763
  55. Stitt, M. 1996. Plasmodesmata play an essential role in sucrose export from leaves: a step toward an integration of metabolic biochemistry and cell biology. Plant Cell 8, 565-571. https://doi.org/10.1105/tpc.8.4.565
  56. Storr, T. and Hall, J. L. 1992. The effect of infection by Erysiphe pisi DC on acid and alkaline invertase activities and aspects of starch biochemistry in leaves of Pisum sativum L. New Phytol. 121, 535-543. https://doi.org/10.1111/j.1469-8137.1992.tb01123.x
  57. Sturm, A. and Chrispeels, M. J. 1990. cDNA cloning of carrot extracellular ${\beta}$-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2, 1107-1119.
  58. Sturm, A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 121, 1-8. https://doi.org/10.1104/pp.121.1.1
  59. Sun, L., Yang, D. L., Kong, Y., Chen, Y., Li, X. Z., Zeng, L. J., Li, Q., Wang, E. T. and He, Z. H. 2014. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defense in rice. Mol. Plant. Pathol. 15, 161-173. https://doi.org/10.1111/mpp.12078
  60. Tang, X., Ruffner, H., Scholes, J. D. and Rolfe, S. A. 1996. Purification and characterization of soluble invertases from leaves of Arabidopsis thaliana. Planta 198, 17-23.
  61. Tauzin, A. S. and Giardina, T. 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front. Plant Sci. 5, 293.
  62. Tummler, K, Lubitz, T., Schelker, M. and Klipp, E. 2014. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. FEBS J. 281, 549-571. https://doi.org/10.1111/febs.12525
  63. Tymowska-LaLanne, Z. and Kreis, M. 1998. The plant invertases: physiology, biochemistry and molecular biology. Adv. Bot. Res. 28, 71-117.
  64. Unger, A., Hofsteenge, J. and Sturm, A. 1992. Purification and characterization of a soluble ${\beta}$-fructofuranosidase from Daucus carota. Eur. J. Biochem. 204, 915-921. https://doi.org/10.1111/j.1432-1033.1992.tb16712.x
  65. Van den Ende, W. and Van Laere, A. 1995. Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiol. Planta. 93, 241-248. https://doi.org/10.1111/j.1399-3054.1995.tb02223.x
  66. Wachter, R., Langhans, M., Aloni, R., Gotz, S., Weilmunster, A. and Koops, A. 2003. Vascularization, high-volume solution flow, and localized roles for enzymes of sucrose metabolism during tumorigenesis by Agrobacterium tumefaciens. Plant Physiol. 133, 1024-1037. https://doi.org/10.1104/pp.103.028142
  67. Wang, J., Nayak, S., Koch, K. and Ming, R. 2013. Carbon partitioning in sugarcane (Saccharum species). Front. Plant Sci. 4, 201.
  68. Walker, R. P. and Pollock, C. J. 1993. The purification and characterization of soluble acid invertase from coleoptiles of wheat (Triticum aestivum L. cv. Avalon). J. Exp. Bot. 44, 1029-1037. https://doi.org/10.1093/jxb/44.6.1029
  69. Wesser, H., Borisjuk, L., Heim, U., Buchner, P. and Wobus, U. 1995. Seed coat-associated invertases of fava bean control Both unloading and storage functions. Cloning of cDNAs and cell type-specific expression. Plant Cell 7, 1835-1846.
  70. Wu, L., Mitchell, J. P., Cohn, N. S. and Kaufman, P. B. 1993. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots. Int. J. Plant Sci. 154, 280-289. https://doi.org/10.1086/297108
  71. Yelle, S., Chetelat, R. T., Dorais, M., DeVerna, J. W. and Bennett, A. 1991. Sink metabolism in tomato fruit. Plant Physiol. 95, 1026-1035. https://doi.org/10.1104/pp.95.4.1026
  72. Zhang, L., Cohn, N. S. and Mitchell, J. P. 1996. Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiol. 112, 1111-1117. https://doi.org/10.1104/pp.112.3.1111