DOI QR코드

DOI QR Code

Optimized Processing Condition of Production of Nannochloropsis oculata under Light-emitting Diode (LED) Condition

LED배양조건에서 미세조류 Nannochloropsis oculata의 생산 효율성을 높이는 공정 최적화

  • Lee, Nam Kyu (Department of Marine industry Reliability Center)
  • 이남규 ((재)부산테크노파크 해양산업신뢰성센터)
  • Received : 2017.04.25
  • Accepted : 2017.07.17
  • Published : 2017.07.30

Abstract

The 100 l culture system was made on the basis of LED light, and Nannochloropsis oculata was cultured in f/2 medium at light intensity ($100{\mu}mol/m^2/s$), culture temperature ($20^{\circ}C{\pm}1^{\circ}C$) and LD cycle (12hr). As a result, the maximum biomass of 1.07 g/l was cultured as a result of 100 l mass culture at $100{\mu}mol/m^2/s$ and 24 mg/l nitrate concentration in LED blue (475 nm). The extraction was carried out using sonicator, homogenizer and chemical method 0.5M HCl shredding method. The contents of chlorophyll a, chlorophyll b and carotenoid were 1.6, 0.5 and 0.3 mg/g cell. When using homogenizer, it was measured at 1.0, 0.6 and 0.2 mg/g cell. The chemical breakdown method of 0.5M HCl, chlorophyll a, b, and carotenoid contents were measured as 0.9, 0.8, 0 mg/g cell. The highest amount of biomass during the distruption time was measured at 3.6 mg/g cell at 15 min disintegration and acetone, 3.6 mg/g cell of acetone, methanol, and ethanol were measured as effective solvents. Concentration was measured by using microfilter, disk type continuous centrifuge and tubular type continuous centrifuge were 16.0, 1.1 and 0.5 g/l, respectively. Four kinds of equipment such as hot air dryer, vacuum dryer, spray dryer and freeze dryer were tested to optimize the drying process. As a result, the recovery rates of spray dryer and freeze dryer were 80% and 60%.

100 l scale 미세조류 배양 시스템은 LED 광을 기반으로 자체 제작하였으며 Nannochloropsis oculata를 f/2 medium에서 광도($100{\mu}mol/m^2/s$), 배양온도($20^{\circ}C{\pm}1^{\circ}C$), LD cycle (12 hr)으로 배양하였다. 그 결과 LED blue (475 nm)에서 $100{\mu}mol/m^2/s$의 광도, 24 mg/l의 nitrate 농도에서 100 l 대량배양 결과 최대 biomass인 1.07 g/l를 배양하였다. 이렇게 배양된 미세조류에서 유용물질을 추출의 위한 추출방법을 확보하고 나아가 산물의 추출, 농축 및 건조공정 기술을 최적화하고자 하였다. 추출은 물리적인 방법인 sonicator, homogenizer를 이용한 파쇄법과 화학적인 방법인 0.5M HCl 파쇄법을 이용한 결과 chlorophyll a, chlorophyll b, carotenoid 함량은 물리적인 파쇄법인 sonicator를 이용 시 1.6, 0.5, 0.3 mg/g cell, homogenizer 이용 시 1.0, 0.6, 0.2 mg/g cell로 측정되었다. 0.5M HCl의 화학적 파쇄법 이용 시 chlorophyll a, chlorophyll b 함량은 0.9, 0.8 mg/g cell으로 측정되었다. 파쇄시간당 추출되는 영양물질이 가장 높은 시간은 15 min 파쇄 시 3.6 mg/g cell로 측정되었으며 acetone, methanol, ethanol의 3가지 용매 중 acetone이 3.6 mg/g cell로 효과적이 용매로 측정되었다. 농축은 2종류의 연속원심분리장비(tubular type, disk type), 마이크로필터, 필터프레스 4종 장비를 이용하여 시험한 결과 마이크로필터, disk type 연속원심분리기, Tubular type 연속원심분리기의 경우 16.0, 1.1, 0.5 g/l의 순으로 시간당 수율을 확인하였다. 건조공정 최적화를 위하여 열풍건조기, 진공건조기, 분무건조기, 동결건조기 등의 4종 시생산설비를 이용해 미세조류의 시간당 회수율 분무건조기는 Dextrin 0.5 kg이 첨가되면 회수율이 80%이지만 순도가 떨어졌고 동결건조기 회수율은 60%로 측정되었다.

Keywords

References

  1. Aflalo, C., Meshulam, Y., Zarka, A. and Boussiba, S. 2007. On the relative efficiency of two-versus one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98, 300-305. https://doi.org/10.1002/bit.21391
  2. Chojnacka, K. and Noworyta, A. 2004. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzym. Microb. Technol. 34, 461-465. https://doi.org/10.1016/j.enzmictec.2003.12.002
  3. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H. and Lin, C. S. 2009. Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration. Bioresour. Technol. 100, 833-838. https://doi.org/10.1016/j.biortech.2008.06.061
  4. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. and Del, B. M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48, 1146-1151.
  5. Calvalho, A. P., Silva, S. O., Baptista, J. M. and Malcata, X. F. 2011. Light requirements in microalgal photobioreactor: an overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89, 1275-1288. https://doi.org/10.1007/s00253-010-3047-8
  6. Go, S. G., Lee, S. J., Jeong, G. T. and Kim, S. K. 2012. Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmissuecica. Bioprocess. Biosyst. Eng. 35, 145-150. https://doi.org/10.1007/s00449-011-0635-7
  7. Huang, G. H., Chen, F., Wei, D., Zhang, X. W. and Chen, G. 2010. Biodiesel production by microalgal biotechnology. Appl. Energy 87, 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
  8. Korbee, N., Figureroa, F. L. and Aguilera, J. 2005. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like aminoacids in the red alga Porphyra leucosticte (Bangilales, Rodophyta). J. Photochem. Photobiol. B. Biol. 80, 71-78. https://doi.org/10.1016/j.jphotobiol.2005.03.002
  9. Malcata, F. X. 2011. Micro algae and biofuels: a promising partnership. Trands Biotechnol. 29, 1-8. https://doi.org/10.1016/j.tibtech.2010.10.005
  10. Pal, D., Goldberg, I., Cohen, Z. and Boussiba, S. 2011. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 90, 1429-1441. https://doi.org/10.1007/s00253-011-3170-1
  11. Shafiee, S. and Topal, E. 2010. A long-term view of worldwide fossil fuel prices. Appl. Energy 87, 988-1000. https://doi.org/10.1016/j.apenergy.2009.09.012
  12. Palanichamy, S. and Rani, V. 2004. Observations on the long term preservation and culture of the marine microalga, Nannochloropsis oculata, J. Mar. Biol. Ass. India 46, 98-103.
  13. Kang, D. H., Heo, S. J., Oh, C. H., Ju, S. J., Jeon, S. M., Choi, H. W., Noh, J. H., Park, S. H. and Kim, T. Y. 2012. A review on major factors for miciroalgae biofuel commercialization. Ocean Polar Res. 34, 365-384. https://doi.org/10.4217/OPR.2012.34.4.365