DOI QR코드

DOI QR Code

Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface

굴곡 융착면을 이용한 고밀도폴리에틸렌 관의 버트 융착 공정에서의 열유체 거동 수치모사

  • Yoo, Jae Hyun (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Choi, Sunwoong (Department of Advanced Materials & Chemical Engineering, Hannam University) ;
  • Ahn, Kyung Hyun (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Oh, Ju Seok (Department of Advanced Materials & Chemical Engineering, Hannam University)
  • 유재현 (서울대학교 화학공정신기술연구소 화학생물공학부) ;
  • 최선웅 (한남대학교 화공신소재공학과) ;
  • 안경현 (서울대학교 화학공정신기술연구소 화학생물공학부) ;
  • 오주석 (한남대학교 화공신소재공학과)
  • Received : 2017.02.20
  • Accepted : 2017.04.10
  • Published : 2017.08.01

Abstract

Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

폴리머 재질의 관을 융착 시키기 위해서는 버트 융착 공정을 거치는데, 최근 융착면에 굴곡을 주어 융착 강도를 높이고자 하는 시도가 있었다. 본 연구에서는 융착면의 굴곡이 폴리머의 열유체 거동 및 융착 강도에 어떠한 영향을 미칠 것인지 2차원 축대칭 평면에서 유한요소법을 사용하여 살펴보았으며, 고밀도폴리에틸렌 관을 대상으로 하였다. 열유화 단계에서 융착면의 형상을 따라 굴곡진 상경계면이 나타남을 확인할 수 있었다. 접합 단계에서는 굴곡진 상경계면과 융착면 사이에서의 멜트의 압착 흐름이 나타남을 확인할 수 있었으며, 굴곡융착부의 낮은 전단율은 관의 축과 수직 방향 배향을 완화시켜 융착부 강도 향상에 도움을 줄 수 있을 것으로 예상된다.

Keywords

References

  1. EL-Bagory, T. M., Sallam, H. E. and Younan, M. Y., "Effect of Strain Rate, Thickness, Welding on the J-R Curve for Polyethylene Pipe Materials," Theor. Appl. Fract. Mec., 74, 164-180(2014). https://doi.org/10.1016/j.tafmec.2014.09.008
  2. Leskovics, K., Kollar, M. and Barczy, P., "A Study of Structure and Mechanical Properties of Welded Joints in Polyethylene Pipes," Mater. Sci. Eng. A, 419, 138-143(2006). https://doi.org/10.1016/j.msea.2005.12.019
  3. Wood, A. S., "The Butt-fusion Welding of Polymers," Chem. Eng. Sci., 48, 3071-3082(1993). https://doi.org/10.1016/0009-2509(93)80173-N
  4. Shillitoe, S., Day, A. J. and Benkreira, H., "A Finite Element Approach to Butt Fusion Welding Analysis," P. I. Mech. Eng. E-J. Pro., 204, 95-101(1990). https://doi.org/10.1243/PIME_PROC_1990_204_172_02
  5. Benkreira, H., Shillitoe, S. and Day, A. J., "Modeling of the Butt Fusion Welding Process," Chem. Eng. Sci., 46, 135-142(1991). https://doi.org/10.1016/0009-2509(91)80123-G
  6. Wood, A. S., "Numerical Simulation of the Butt-fusion Welding Process," IMA J. Math. Appl. Bus., 7, 117-127(1996).
  7. Barber, P. and Atkinson, J. R., "Some Microstructural Features of the Welds in Butt-welded Polyethylene and Polybutene-1 Pipes," J. Mater. Sci., 7, 1131-1136(1972). https://doi.org/10.1007/BF00550195
  8. Barber, P. and Atkinson, J. R., "The Use of Tensile Tests to Determine the Optimum Conditions for Butt Fusion Welding Certain Grades of Polyethylene, Polybutene-1 and Polypropylene Pipes," J. Mater. Sci., 9, 1456-1466(1974). https://doi.org/10.1007/BF00552931
  9. Colaluca, M. A., Earles, L. L. and Malguarnera, S. C., "Fractional Factorial Testing to Determine Processing Parameters Producing Acceptable Heat Fused Joints in Polyethylene Pipe," Polym-Plast. Technol., 20, 181-195(1983). https://doi.org/10.1080/03602558308062807
  10. Decourcy, D. R. and Atkinson, J. R., "The Use of Tensile Tests to Determine the Optimum Conditions for Butt Welding Polyethylene Pipes of Different Melt Flow Index," J. Mater. Sci., 12, 1535-1551(1977). https://doi.org/10.1007/BF00542804
  11. Riahi, M., Kooshayan, K. and Ghanati, M. F., "Analysis of Effect of Pressure and Heat on Mechanical Characteristic of Butt Fusion Welding of Polyethylene Pipes," Polym-Plast. Technol., 50, 907-915(2011). https://doi.org/10.1080/03602559.2011.551982
  12. Yoo, J. H., Choi, S., Nam, J., Ahn, K. H. and Oh, J. S., "Numerical Analysis of the Heat Transfer and Fluid Flow in the Buttfusion Welding Process," Korea-Aust. Rheol. J., 29, 37-49(2017). https://doi.org/10.1007/s13367-017-0005-3
  13. Mao, W. and Khayat, R. E., "Numerical Simulation of Transient Planar Flow of a Viscoelastic Material with Two Moving Free Surfaces," Int. J. Numer. Meth. Fl., 21, 1137-1151(1995). https://doi.org/10.1002/fld.1650211203
  14. Lee, S. H., Koh, H. J., Shim, S. H., Jung, H. W. and Hyun, J. C., "An Optimal Die Design for the Coating Uniformity of Nan-Newtonian Liquids in Slot Coating Process," Korean Chem. Eng. Res., 49(3), 314-319(2011). https://doi.org/10.9713/kcer.2011.49.3.314
  15. Huang, C., Winkler, R. G., Sutmann, G. and Gompper, G., "Semidilute Polymer Solutions at Equilibrium and Under Shear Flow," Macromolecules, 43, 10107-10116(2010). https://doi.org/10.1021/ma101836x
  16. Islam, M. T. and Archer, L. A., "Nonlinear Rheology of Highly Entangled Polymer Solutions in Start-up and Steady Shear Flow," J. Polym. Sci. Pol. Phys., 39, 2275-2289(2001). https://doi.org/10.1002/polb.1201
  17. Padding, J. T. and Briels, W. J., "Coarse-grained Molecular Dynamics Simulations of Polymer Melts in Transient and Steady Shear Flow," J. Chem. Phys., 118, 10276-10286(2003). https://doi.org/10.1063/1.1572459
  18. Oh, J. S., Choi, S. W., "Joining Method for Polyethylene Pipes Using Butt Fusion," The Korean Intellectual Property Office, Application No. 10-2014-0045605(2014).