DOI QR코드

DOI QR Code

Adsorption Equilibrium, Kinetic and Thermodynamic Param

활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구

  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2017.02.10
  • Accepted : 2017.03.31
  • Published : 2017.08.01

Abstract

Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

활성탄을 사용하여 흡착제의 양, pH, 초기농도, 접촉시간과 온도를 흡착변수로 acid green 27 염료의 흡착특성을 조사하였다. 흡착평형자료는 Freundlich와 Langmuir 등온식을 사용하여 해석하였는데, Freundlich 식이 더 좋은 일치도를 나타냈다. 평가된 Freundlich 분리계수(1/n=0.293~0.387)로부터 활성탄에 의한 acid green 27의 흡착조작이 효과적인 처리방법이 될 수 있음을 알았다. 흡착속도실험 결과는 유사이차 반응속도식에 잘 맞았으며, 유사이차속도상수($k_2$)값은 acid green 27 초기농도가 증가할수록 감소하였다. 활성화에너지값(10.457 kJ/mol)과 표준엔탈피변화값(76.946 kJ/mol)으로 흡착공정이 물리흡착이고 흡열반응임을 알았다. 298~318 K 범위에서 Gibbs 자유에너지값은 온도가 올라갈수록 감소하였기 때문에 흡착반응은 온도가 올라갈수록 더 자발적으로 일어났다.

Keywords

References

  1. Robinson, T., Chandran, B. and Nigam, P., "Removal of Dyes from a Synthetic Textile Dye Effluent by Biosorption on Apple Pomace and Wheat Straw," Water Res. 36, 2824-2830(2002). https://doi.org/10.1016/S0043-1354(01)00521-8
  2. Qi, J., Li, Z., Guo, Y. and Xu, H., "Adsorption of Phenolic Compounds on Micro- and Mesoporous Rice Husk-Based Active Carbons," Mater. Chem. Phys. 87, 96-101(2004). https://doi.org/10.1016/j.matchemphys.2004.05.008
  3. Attia, A. A., Girgis, B. S. and Fathy, N. A., "Removal of Methylene Blue by Carbons Derived from Peach Stones by $H_3PO_4$ Activation: Batch and Column Studies," Dyes Pigments, 76, 282-289(2008). https://doi.org/10.1016/j.dyepig.2006.08.039
  4. Secula, M. S., Cagnon, B., Crettescu, I., Diaconu, M. and Petrescu, S., "Removal of an Acid Dye from Aqueous Solutions by Adsorption on a Commercial Granular Activated Carbon: Equilibrium, Kinetic and Thermodynamic Study," St. Cerc. St. CICBIA, 12(4), 307-322(2011).
  5. Hammed, B. H., Ahmad, A. A. and Aziz, N., "Isotherms, Kinetics and Thermodynamics of Acid Dye Adsorption on Activated Palm Ash," Chem. Eng. J. 133, 195-203(2007). https://doi.org/10.1016/j.cej.2007.01.032
  6. Jailkumar, V., "Effect of Biosorption Parameters Kinetics Isotherm and Thermodynamics for Acid Green dye Biosorption from Aqueous Solution by Brewery Waste," Int'l. J. Chem. 1, 1 (2009). https://doi.org/10.1002/qua.560010602
  7. Ansari, R. and Seyghali, B., "Application of Wood Sawdust Modified with Cationic Surfatants for Efficient Removal of Acidic Dyes from Aqueous Solutions: Kinetic and Themodynamic Studies," Eur. Chem. Bull., 2, 499-506(2013).
  8. R. Parimalam, Raj, V., and Sivakumar, P., "Removal of Acid Green 25 from Aqueous Solution by Adsorption, J. Chem., 9(4), 1683-1698(2012).
  9. Ciobanu, G., Harja, M., Rusu, L., Mocanu, A. M. and Luca, C., "Acid Black 72 Dye Adsorption from Aqueous Solution by Hydroxyapatite as Low Cost Adsorbent," Korean J. Chem. Eng., 31(6), 1021-1027(2014). https://doi.org/10.1007/s11814-014-0040-4
  10. Lee, J. J., "Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon," Korean Chem. Eng. Res., 53(1), 64-70(2015). https://doi.org/10.9713/kcer.2015.53.1.64
  11. Ashraf, M. A., Hussain, M., Mahmood, K., Wajid, A., Alias, M. Y. Y. and Yusoff, I., "Removal of Acid Yellow-17 Dye from Aqueous Solution Using Eco-Friendly Biosorbent," Desalin. Water Treat., 51(22-24), 4530-4545(2013). https://doi.org/10.1080/19443994.2012.747187
  12. Durala, M. U., Cavasa, L., Papageorgiouc, S. K. and Katsarosc, F. K. "Methylene Blue Adsorption on Activated Carbon Prepared from Posidonia Oceanica (L.) Dead Leaves: Kinetics and Equilibrium Studies," Chem. Eng. J., 168, 77-85(2011). https://doi.org/10.1016/j.cej.2010.12.038
  13. Lee, J. J., "Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon," Korean Chem. Eng. Res., 54(2), 255-261(2016). https://doi.org/10.9713/kcer.2016.54.2.255
  14. Vargas, A. M. M., Cazetta, A. L., Martins, A. C., Moraes, J. C. G., Garcia, E. E., Gauze, G. F., Costa, W. F., and Almedia, V. C., "Kinetics and Equilibrium Studies : Adsorption of Food Dyes Acid Yellow 6, Acid Yellow 23, and Acid Red 18 on Acitivated Carbon from Flamboyant Pods," Chem. Eng. J., 181-182, 243-250(2012). https://doi.org/10.1016/j.cej.2011.11.073
  15. Monika, J., Garg, V. and Kadirvelu. D K., "Chromium (VI) Removal from Aqueous Solution, Using Sunflower Stem Waste," J. Hazard. Mater., 162, 365-372(2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  16. Mital, A., "Adsorption Kinetics of Removal of a Toxic Dye, Malachite Green, from Wastewater by Using Hen Feathers," J. Hazard. Mater. B133, 196-201(2006).
  17. Sulak, M. T. Demirbas, E. and Kobya, M., "Removal of Astrazon Yellow 7GL from Aqueous Solutions by Adsorption onto Wheat Bran," Bioresour. Technol., 98, 2590-2598(2007). https://doi.org/10.1016/j.biortech.2006.09.010
  18. Peng, X. HU, X. Fu, D. and Lam, F. L. Y., "Adsorption Removal of Acid Black 1 from Aqueous Solution Using Ordered Mesoporous Carbon," Appl. Surf. Sci., 294, 71-80(2014). https://doi.org/10.1016/j.apsusc.2013.11.157