DOI QR코드

DOI QR Code

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2017.03.29
  • Accepted : 2017.04.25
  • Published : 2017.08.01

Abstract

The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

Keywords

References

  1. Xiao, Q., Sohn, H., Chen, Z., Toso, D., Mechlenburg, M., Zhou, Z. H., Poirier, E., Dailly, A., Wang, H., Wu, Z., Cai, M. and Lu, Y., "Mesoporous Metal and Metal Alloy Particles Synthesized by Aerosol-Assisted Confined Growth of Nanocrystals," Angew. Chem. Int. Ed., 51, 10546-10550(2012). https://doi.org/10.1002/anie.201204289
  2. Sohn, H., Chen, Z., Jung, Y. S., Xiao, Q., Cai, M., Wang, H. and Lu, Y., "Robust Lithium-ion Anodes Based on Nanocomposites of Iron Oxide-carbon-silicate," J. Mater. Chem. A, 1, 4539-4545(2013). https://doi.org/10.1039/c2ta00443g
  3. Jin, E. M., Lee, G.-E., Na, B.-K. and Jeong, S. M., "Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery," Korean Chem. Eng. Res., 55(2), 163-169(2017). https://doi.org/10.9713/KCER.2017.55.2.163
  4. Kang, K.-Y., Choi, M. G., Lee, Y.-G. and Kim, K. M., "Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$," Korean Chem. Eng. Res., 49(5), 541-547(2011). https://doi.org/10.9713/kcer.2011.49.5.541
  5. Ji, X. and Nazar, L. F., J. Mater. Chem., 20, 9821-9826(2010). https://doi.org/10.1039/b925751a
  6. Manthiram, A., Fu, Y. and Su, Y.-S., "Challenges and Prospects of Lithium-Sulfur Batteries," Acc. Chem. Res., 46, 1125-1134(2013). https://doi.org/10.1021/ar300179v
  7. Marmorstein, D., Yu, T. H., Striebel, K. A., McLarnon, F. R., Hou, J. and Cairns, E. J., "Electrochemical Performance of Lithium/sulfur Cells with Three Different Polymer Electrolytes," J. Power Sources, 89, 219-226(2000). https://doi.org/10.1016/S0378-7753(00)00432-8
  8. Chen, S., Dai, F., Gordin, M. L. and Wang, D., "Exceptional Electrochemical Performance of Rechargeable Li-S Batteries with a Polysulfide-containing Electrolyte," RSC Adv., 3, 3540-3543(2013). https://doi.org/10.1039/c3ra23070h
  9. Sohn, H., Gordin, M. L., Regula, M., Kim, D. H., Jung, Y.-S., Song, J. and Wang, D., "Porous Spherical Polyacrylonitrile-carbon Nanocomposite with High Loading of Sulfur for Lithium-sulfur Batteries," J. Power Sources, 302, 70-78(2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
  10. Sohn, H., Gordin, M. L., Xu, T., Chen, S., Lv, D., Song, J., Manivannan, A. and Wang, D., "Porous Spherical Carbon/Sulfur Nanocomposites by Aerosol-Assisted Synthesis: The Effect of Pore Structure and Morphology on Their Electrochemical Performance As Lithium/Sulfur Battery Cathodes," ACS Appl. Mater. Interfaces, 6, 7596-7606(2014). https://doi.org/10.1021/am404508t
  11. Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. and Peled, E. J., "Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions," J. Electrochem. Soc., 135, 1045-1048(1988). https://doi.org/10.1149/1.2095868
  12. Mikhaylik, Y. V. and Akridge, J. R., "Polysulfide Shuttle Study in the Li/S Battery System," J. Electrochem. Soc., 151, A1969-A1976(2004). https://doi.org/10.1149/1.1806394
  13. Liang, C., Dudney, N. J. and Howe, J. Y., "Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery," Chem. Mater., 21, 4724-4730(2009). https://doi.org/10.1021/cm902050j
  14. Lai, C., Gao, X. P., Zhang, B., Yan, T. Y. and Zhou, Z., "Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites," J. Phys. Chem. C, 113, 4712-4716(2009). https://doi.org/10.1021/jp809473e
  15. Zhang, B., Qin, X., Li, G. R. and Gao, X. P., "Enhancement of Long Stability of Sulfur Cathode by Encapsulating Sulfur into Micropores of Carbon Spheres," Energy Environ. Sci., 3, 1531-1537(2010). https://doi.org/10.1039/c002639e
  16. Liang, X., Wen, Z., Liu, Y., Zhang, H., Huang, L. and Jin, J., "Highly Dispersed Sulfur in Ordered Mesoporous Carbon Sphere as a Composite Cathode for Rechargeable Polymer Li/S Battery," J. Power Sources, 196, 3655-3658(2011). https://doi.org/10.1016/j.jpowsour.2010.12.052
  17. Schuster, J., He, G., Mandlmeier, B., Yim, T., Lee, K. T., Bein, T. and Nazar, L. F., "Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries," Angew. Chem. Int. Ed., 51, 3591-3595(2012). https://doi.org/10.1002/anie.201107817
  18. Xu, T., Song, J., Gordin, M. L., Sohn, H., Yu, Z., Chen, S. and Wang, D., "Mesoporous Carbon-Carbon Nanotube-Sulfur Composite Microspheres for High-Areal-Capacity Lithium-Sulfur Battery Cathodes," ACS Appl. Mater. Interfaces, 5, 11355-11362(2013). https://doi.org/10.1021/am4035784
  19. Cheon, S. E., Ko, K. S., Cho, J. H., Kim, S. W., Chin, E. Y. and Kim, H. T., "Rechargeable Lithium Sulfur Battery II. Rate Capability and Cycle Characteristics," J. Electrochem. Soc., 150, A800-A805(2003). https://doi.org/10.1149/1.1571533
  20. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S., "Preparation and Characterization of Graphene Oxide Paper," Nature, 448, 457-460(2007). https://doi.org/10.1038/nature06016
  21. Agostini, M. and Hassoun, J., "A Lithium-ion Sulfur Battery Using a Polymer, Polysulfide-added Membrane," Sci. Rep., 5, 7591-7595(2015). https://doi.org/10.1038/srep07591
  22. Wang, J., Chew, S. Y., Zhao, Z. W., Ashraf, S., Wexler, D., Chen, J., Ng, S. H., Chou, S. L. and Liu, H. K., "Sulfur-mesoporous Carbon Composites in Conjunction with a Novel Ionic Liquid Electrolyte for Lithium Rechargeable Batteries," Carbon, 46, 229-235(2008). https://doi.org/10.1016/j.carbon.2007.11.007
  23. Li, X., Cao, Y., Qi, W., Saraf, L. V., Xiao, J., Nie, Z., Mietek, J., Zhang, J.-G., Schwenzer, B. and Liu, J., "Optimization of Mesoporous Carbon Structures for Lithium-sulfur Battery Applications," J. Mater. Chem., 21, 16603-16610(2011). https://doi.org/10.1039/c1jm12979a
  24. Sun, X.-G., Wang, X., Mayes, R. T. and Dai, S., "Lithium-Sulfur Batteries Based on Nitrogen-Doped Carbon and an Ionic-Liquid Electrolyte," ChemSusChem, 5, 2079-2085(2012). https://doi.org/10.1002/cssc.201200101
  25. Gordin, M. L., Dai, F., Chen, S., Xu, T., Song, J., Tang, D., Azimi, N., Zhang, Z. and Wang, D., "Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium-Sulfur Batteries," ACS Appl. Mater. Interfaces, 6, 8006-8010(2014). https://doi.org/10.1021/am501665s

Cited by

  1. Recent Progress of Electrochemical Energy Devices: Metal Oxide-Carbon Nanocomposites as Materials for Next-Generation Chemical Storage for Renewable Energy vol.11, pp.13, 2017, https://doi.org/10.3390/su11133694
  2. Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance vol.30, pp.1, 2020, https://doi.org/10.14579/membrane_journal.2020.30.1.30
  3. Iron oxide-carbon nanocomposites modified by organic ligands: Novel pore structure design of anode materials for lithium-ion batteries vol.904, pp.None, 2022, https://doi.org/10.1016/j.jelechem.2021.115905