DOI QR코드

DOI QR Code

The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell

고분자 전해질 연료전지의 전해질 막 두께가 내구성과 성능에 미치는 영향

  • Received : 2017.02.03
  • Accepted : 2017.04.25
  • Published : 2017.08.01

Abstract

The polymer membrane of proton exchange membrane fuel cell (PEMFC) has a great influence on PEMFC performance and durability. In this study, hydrogen permeability, fluorine emission rate (FER), lifetime, and performance of Nafion membranes with different thicknesses were measured to investigate the effect of thickness of polymer membrane on performance and durability. The relationship between membrane thickness and lifetime was obtained from the relationships between hydrogen permeability and membrane thickness, hydrogen permeability and FER, FER and lifetime. As the membrane became thicker, the hydrogen permeability and FER decreased and the lifetime increased. On the other hand, the performance decreased with increasing membrane resistance. The membrane thickness range satisfying both performance and durability was 25 to $28{\mu}m$.

고분자 전해질 연료전지(PEMFC)의 고분자 막은 PEMFC 성능과 내구성에 많은 영향을 준다. 본 연구에서는 고분자막의 두께가 성능과 내구성에 미치는 영향을 파악하기 위해 두께가 다른 Nafion 막의 수소투과도, 불소 유출 속도(FER), 수명, 성능을 측정했다. 막 두께에 따른 수소투과도, 수소투과도와 FER과의 관계, FER과 수명과의 관계로부터 막 두께와 수명의 관계를 얻었다. 막이 두꺼워지면 수소투과도와 FER이 작아지면서 수명이 증가하였다. 반면에 막이 두꺼워지면 막 저항이 증가하면서 성능은 감소하였다. 성능과 내구성을 동시에 만족시키는 막 두께 범위는 $25{\sim}28{\mu}m$였다.

Keywords

References

  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  2. Perry, M. L. and Fuller, T. F., "A historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc., 149(7), S59-S67(2002). https://doi.org/10.1149/1.1488651
  3. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
  4. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  5. Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-154(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  6. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at Hight Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005). https://doi.org/10.1149/1.1830355
  7. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  8. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  9. Laconti, A. B., Hamdan, M. and MacDonald, R. C., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cells: Fundamentals Technology and and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  10. Weber, A. Z., "Gas-Crossover and Membrane-Pinhole Effects in Polymer-Electrolyte Fuel Cells," Journal of The Electrochemical Society, 155(6), B521-B531(2008). plications, vol. 3, Wiley & Sons Ltd., Chichester, England, 647-662(2003). https://doi.org/10.1149/1.2898130
  11. Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC," Korean Chem. Eng. Res., 52(4), 425-429(2014). https://doi.org/10.9713/kcer.2014.52.4.425
  12. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  13. Saurabh A. Vilekar, Ravindra Datta, "The Effect of Hydrogen Crossover on Open-circuit Voltage in Polymer Electrolyte Membrane Fuel Cells," Journal of Power Sources, 195, 2241-2247(2010). https://doi.org/10.1016/j.jpowsour.2009.10.023

Cited by

  1. Designing AI‐Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalyst‐Based Proton‐Exchange Membrane Fuel Cells vol.132, pp.43, 2017, https://doi.org/10.1002/ange.202006928
  2. Designing AI‐Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalyst‐Based Proton‐Exchange Membrane Fuel Cells vol.59, pp.43, 2017, https://doi.org/10.1002/anie.202006928