References
- Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
- Perry, M. L. and Fuller, T. F., "A historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc., 149(7), S59-S67(2002). https://doi.org/10.1149/1.1488651
- Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
- Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
- Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-154(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
- Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at Hight Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005). https://doi.org/10.1149/1.1830355
- Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
- Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
- Laconti, A. B., Hamdan, M. and MacDonald, R. C., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cells: Fundamentals Technology and and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
- Weber, A. Z., "Gas-Crossover and Membrane-Pinhole Effects in Polymer-Electrolyte Fuel Cells," Journal of The Electrochemical Society, 155(6), B521-B531(2008). plications, vol. 3, Wiley & Sons Ltd., Chichester, England, 647-662(2003). https://doi.org/10.1149/1.2898130
- Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC," Korean Chem. Eng. Res., 52(4), 425-429(2014). https://doi.org/10.9713/kcer.2014.52.4.425
- Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
- Saurabh A. Vilekar, Ravindra Datta, "The Effect of Hydrogen Crossover on Open-circuit Voltage in Polymer Electrolyte Membrane Fuel Cells," Journal of Power Sources, 195, 2241-2247(2010). https://doi.org/10.1016/j.jpowsour.2009.10.023
Cited by
- Designing AI‐Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalyst‐Based Proton‐Exchange Membrane Fuel Cells vol.132, pp.43, 2017, https://doi.org/10.1002/ange.202006928
- Designing AI‐Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalyst‐Based Proton‐Exchange Membrane Fuel Cells vol.59, pp.43, 2017, https://doi.org/10.1002/anie.202006928