References
- Armstrong, J.P., Skaar, C., deZeeuw, C. 1984. The effect of specific gravity on some mechanical properties of some world woods. Wood Science Technology 18(2): 137-146. https://doi.org/10.1021/es00123a602
- Bergsten, U., Lindeberg, J., Rindby, A., Evans, R. 2001. Batch measurements of wood density on intact or prepared drill cores using x-ray microdensitometry. Wood Science and Technology 35(5): 435-452. https://doi.org/10.1007/s002260100106
- Burns, D.A., Ciurczak, E.W. 2007. Handbook of near-infrared analysis 3rd ed. CRC press. Boca Raton. USA.
- Cooper, P.A., Jeremic, D., Radivojevic, S., Ung, Y.T., Leblon, B. 2011. Potential of near-infrared spectroscopy to characterize wood products. Canadian Journal of Forest Research 41(11): 2150-2157. https://doi.org/10.1139/x11-088
- Forest Products Laboratory. 2010. Wood Handbook: Wood as an Engineering Material. General Technical Report 190, USDA Forest Products Laboratory, Madison, WI, USA.
- Greaves, B.L., Borralho, N.M., Raymond, C.A., Farrington, A. 1996. Use of a Pilodyn for the indirect selection of basic density in Eucalyptus nitens. Canadian Journal of Forest Research 26(9): 1643-1650. https://doi.org/10.1139/x26-185
- Hans, G., Leblon, B., Stirling, R., Nader, J., LaRocque, A., Cooper, P. 2013. Monitoring of moisture content and basic specific gravity in black spruce logs using a hand-held MEMS-based near-infrared spectrometer. The Forestry Chronicle 89(5): 607-620. https://doi.org/10.5558/tfc2013-112
- Hein, P.R.G., Lima, J.T., Chaix, G. 2009. Robustness of models based on near infrared spectra to predict the basic density in Eucalyptus urophylla wood. Journal of near infrared spectroscopy 17(3): 141-150. https://doi.org/10.1255/jnirs.833
- Isik, F., Li, B. 2003. Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Canadian Journal of Forest Research 33(12): 2426-2435. https://doi.org/10.1139/x03-176
- Kothiyal, V., Raturi, A. 2011. Estimating mechanical properties and specific gravity for five-year-old Eucalyptus tereticornis having broad moisture content range by NIR spectroscopy. Holzforschung 65(5): 757-762. https://doi.org/10.1515/hf.2011.055
- Park, W.K., Telewski, F.W. 1993. Measuring maximum latewood density by image analysis at the cellular level. Wood and Fiber Science 25(4): 326-332.
- Martens, H., Næs, T. 1991. Multivariate calibration. John Wiley & Sons, Chichester, U.K.
- Ruthenburg, T.C., Perlin, P.C., Liu, V., McDade, C.E., Dillner, A.M. 2014. Determination of organic matter and organic matter to organic carbon ratios by infrared spectroscopy with application to selected sites in the improve network. Atmospheric Environment 86: 47-57. https://doi.org/10.1016/j.atmosenv.2013.12.034
- Schimleck, L.R., Monteiro de Matos, J., da Silva Oliveira, J., Bolzon Muniz, G. 2011. Non-destructive estimation of pernambuco (Caesalpinia echinata) clear wood properties using near infrared spectroscopy. Journal of Near Infrared Spectroscopy 19(5): 411-419. https://doi.org/10.1255/jnirs.953
- Schwanninger, M., Rodrigues, J.C., Gierlinger, N., Hinterstoisser, B. 2011. Determination of lignin content in Norway spruce wood by Fourier transformed near infrared spectroscopy and partial least squares regression. Part 1. Wavenumber-selection and evaluation of the selected range. Journal of Near Infrared Spectroscopy 19(5): 319-329. https://doi.org/10.1255/jnirs.944
- Shenk, J.S., Westerhaus, M.O. 1991a. Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop science 31(2): 469-474. https://doi.org/10.2135/cropsci1991.0011183X003100020049x
- Shenk, J.S., Westerhaus, M.O. 1991b. Populations structuring of near infrared spectra and modified partial least squares regression. Crop Science 31(6): 1548-1555. https://doi.org/10.2135/cropsci1991.0011183X003100060034x
- Shimleck, L.R., Evans, R. 2003. Estimation of air-dry density of increment cores by near infrared spectroscopy. Appita Journal 56(4): 312-317.
- Stirling, R., Trung, T., Breuil, C., Bicho, P. 2007. Predicting wood decay and density using NIR spectroscopy. Wood and Fiber Science 39(3): 414-423.
- Tsuchikawa, S. 2007. A review of recent near infrared research for wood and paper. Applied Spectroscopy Reviews 42(1): 43-71. https://doi.org/10.1080/05704920601036707
- Tsuchikawa, S., Kobori, H. 2015. A review of recent application of near infrared spectroscopy to wood science and technology. Journal of Wood Science 61(3): 213-220. https://doi.org/10.1007/s10086-015-1467-x
- Valdes, E.V., Hunter, R.B., Pinter, L. 1987. Determination of quality parameters by near infrared reflectance spectroscopy in whole-plant corn silage. Canadian journal of plant science 67(3): 747-754. https://doi.org/10.4141/cjps87-102
- Via, B.K., So, C.L., Shupe, T.F., Stine, M., Groom, L.H. 2005. Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood. Wood and Fiber Science 37(3): 394-402.
- Williams, P., Norris, K. 2004. Near-infrared technology in the agricultural and food industries 2nd ed. American Association of Cereal Chemists, Inc., Minnesota. USA.
- Williamson, G.B., Wiemann, M.C. 2010. Measuring wood specific gravity… correctly. American Journal of Botany 97(3): 519-524. https://doi.org/10.3732/ajb.0900243
- Yang, S.Y., Han, Y., Park, J.H., Chung, H., Eom, C.D., Yeo, H. 2015. Moisture Content Prediction Model Development for Major Domestic Wood Species Using Near Infrared Spectroscopy, The Korean Society of Wood Science Technology 43(3): 311-319. https://doi.org/10.5658/WOOD.2015.43.3.311
- Zhang, S.Y. 1995. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Science and Technology 29(6): 451-465. https://doi.org/10.1021/es00010a739