DOI QR코드

DOI QR Code

A Study on the Calculation Method of the Elastomeric Bearing Life Cycle Inventory (LCI) Database to Improve Reliability of Evaluation of Environmental Load of Bridges

교량의 환경부하평가 신뢰성 향상을 위한 교량용 탄성받침 전과정목록 산정방법에 관한 연구

  • 위대형 (인하대학교 환경연구소) ;
  • 김영춘 (한국생산기술연구원 국가청정생산지원센터) ;
  • 곽인호 (인하대학교 환경안전융합) ;
  • 황용우 (인하대학교 환경공학과)
  • Received : 2017.04.10
  • Accepted : 2017.06.23
  • Published : 2017.08.01

Abstract

In this research, life cycle inventory database (LCI DB) was developed for elastomeric bearing employing life cycle assessment (LCA) methodology additionally the reliability improvement rate in the evaluation of the environmental load of the bridge was analyzed. As are result of impact assessment by 6 major impact categories, production of elastomeric bearing puts on environmental impact in the order of resource depletion, global warming, photochemical oxidant creation. and among a wide variety of input, steel plates contributes in most of the impact categories. As a result of applying the elastomeric bearing LCI database constructed in this study, the environmental loads increased by 0.53% on average, and the cut-off based on the cost of input materials increased by 11.36%. It is anticipated that it will be possible to improve the credibility and to provide data based on current production technology, such as estimating GHG emissions and evaluating environmental load, by constructing elastomeric bearing LCI DB.

본 연구에서는 전과정평가 방법론을 활용하여 교량용 탄성받침 제조 공정에 대한 전과정목록(LCI) DB를 구축하고, 교량의 환경부하평가시 신뢰성 향상율을 분석하였다. 교량용 탄성받침의 영향평가 결과, 6대 영향범주 중 자원고갈, 지구온난화, 광화학산화물 생성 범주 순으로 주로 영향을 미치는 것으로 나타냈다. 투입물의 기여도에서는 대부분의 영향범주에서 후판이 가장 높게 나타났다. 본 연구를 통해 구축된 교량용 탄성받침 전과정목록(LCI) DB를 교량 환경부하평가에 적용한 결과 환경부하량은 평균 0.53% 증가하였으며, 투입자재의 금액기준 Cut-off는 11.36% 증가하였다. 교량용 탄성받침 LCI DB 구축을 통해 향후 온실가스 배출량 산정, 환경부하평가 등의 신뢰성을 향상시키고 현재 생산기술에 기반한 자료를 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. Ecoinvent. (2017). Ecoinvent Version 2.2, Ecoinvent, Switzerland, Available at: www.ecoinvent.org (Accessed: January, 2017).
  2. Hwang, Y. W. (2000). "The need for LCA for comprehensive environmental load assessment of the construction industry." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 48, No. 1, pp. 13-18.
  3. IPCC. (2006). IPCC guidelines for national greenhouse gas inventories.
  4. ISO. (2006). ISO 14040:2006 Environmental management-life cycle assessment-principles and framework, ISO, Geneva, Swizerland.
  5. Kim, J. Y., Kim, S. W., Sohn, J. W. (2004). "a study on the estimation of the environmental load intensity of construction materials for the building LCA." Journal of the architectural institute of korea, Vol. 20, No. 7, pp. 208-215.
  6. Korea Institute of Construction Technology. (2004). The environmental load unit composition and program development for LCA of building (in Korean).
  7. Ministry of Environment. (2003). LCI database standard guideline (in Korean).
  8. Ministry of Land, Transport and Maritime Affairs. (2003). The study of lca application schemes on construction industry areas (in Korean).
  9. Ministry of Environment. (2006). Manual for tool of type III labelling and LCA, total (in Korean).
  10. Ministry of Land, Transport and Maritime Affairs. (2008). National D/B for environmental information of building products (in Korean).
  11. Ministry of Environment. (2010). Establishment of emission DB at production stage of material of green building certification (in Korean).
  12. Yun, W. G., Cho, N. H., Lee, W. R., Kim, K. J. (2016). "An analysis of the characteristics of environmental impact for PSC beam bridges using life cycle assessment." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 36, No. 2, pp.297-305. https://doi.org/10.12652/Ksce.2016.36.2.0297