DOI QR코드

DOI QR Code

Facile fabrication of electrospun polyacrylonitrile/poly(vinylidene fluoride)-based carbon nanofibers for supercapacitor electrodes

  • Received : 2017.01.14
  • Accepted : 2017.04.12
  • Published : 2017.07.31

Abstract

Keywords

References

  1. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ. A metal-free organic-inorganic aqueous flow battery. Nature, 505, 195 (2014). http://doi.org/10.1038/nature12909.
  2. Song R, Jin H, Li X, Fei L, Zhao Y, Huang H, Chan HLW, Wang Y, Chai Y. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J Mater Chem A, 3, 14963 (2015). http://doi.org/10.1039/ c5ta03349g.
  3. Cai X, Peng M, Yu X, Fu Y, Zou D. Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J Mater Chem C, 2, 1184 (2014). http://doi.org/10.1039/C3TC31706D.
  4. Hwang YH, Lee SM, Kim YJ, Kahng YH, Lee K. A new approach of structural and chemical modification on graphene electrodes for high-performance supercapacitors. Carbon, 100, 7 (2016). http:// doi.org/10.1016/j.carbon.2015.12.079.
  5. Amali AJ, Sun JK, Xu Q. From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem Commun, 50, 1519 (2014). http://doi.org/10.1039/C3CC48112C.
  6. Yu X, Kang Y, Park HS. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 101, 49 (2016). http://doi.org/10.1016/j.carbon.2016.01.073.
  7. Li Y, Huang D, Shen W. Preparation of supercapacitors based on nanocomposites films of $MnO_2$/CB/C from sodium alginate and $MnO_2$ nanoparticles by direct electrophoretic deposition and carbonization. Electrochim Acta, 182, 104 (2015). http://doi.org/10.1016/j.electacta.2015.08.147.
  8. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater, 23, 4828 (2011). http://doi.org/10.1002/adma.201100984.
  9. An GH, Koo BR, Ahn HJ. Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for highperformance electrochemical capacitors. Phys Chem Chem Phys, 18, 6587 (2016). http://doi.org/10.1039/C6CP00035E.
  10. Miller JR, Simon P. Electrochemical capacitors for energy management. Science, 321, 651 (2008). http://doi.org/10.1126/science.1158736.
  11. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M. Nickel-cobalt hydroxide nanosheets coated on $NiCo_2O_4$ nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett, 13, 3135 (2013). http://doi.org/10.1021/nl401086t.
  12. Wang J, Liu S, Zhang X, Liu X, Liu X, Li N, Zhao J, Li Y. A high energy asymmetric supercapacitor based on flower-like $CoMoO_4$/$MnO_2$ heterostructures and activated carbon. Electrochim Acta, 213, 663 (2016). http://doi.org/10.1016/j.electacta.2016.07.155.
  13. Liu Z, Nie H, Yang Z, Zhang J, Jin Z, Lu Y, Xiao Z, Huang S. Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 5, 3283 (2013). http:// doi.org/10.1039/C3NR34003A.
  14. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen, P, Wu ZY, Yu SH. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 6, 7092 (2012). http://doi.org/10.1021/nn302147s.
  15. Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta, 107, 397 (2013). http://doi.org/10.1016/j.electacta. 2013.06.065.
  16. Wu Y, Shi Q, Li Y, Lai Z, Yu H, Wang H, Peng F. Nitrogendoped graphene-supported cobalt carbonitride@oxide core-shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction. J Mater Chem A, 3, 1142 (2015). http://doi. org/10.1039/c4ta03850a.
  17. Beese AM, Papkov D, Li S, Dzenis Y, Espinosa HD. In situ transmission electron microscope tensile testing reveals structure-property relationships in carbon nanofibers. Carbon, 60, 246 (2013). http://doi.org/10.1016/j.carbon.2013.04.018.
  18. Park SJ, Seo MK, Lee YS. Surface characteristics of fluorine-modified PAN-based carbon fibers. Carbon, 41, 723 (2003). http://doi. org/10.1016/S0008-6223(02)00384-6.
  19. Abeykoon NC, Bonso JS, Ferraris JP. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/ PMMA polymer blends. RSC Adv, 5, 19865 (2015). http://doi.org/10.1039/C4RA16594B.
  20. Yang Y, Centrone A, Chen L, Simeon F, Hatton TA, Rutledge GC. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon, 49, 3395 (2011). http://doi.org/10.1016/j.carbon. 2011.04.015.
  21. Jo E, Yeo JG, Kim DK, Oh JS, Hong CK. Preparation of well‐controlled porous carbon nanofiber materials by varying the compatibility of polymer blends. Polym Int, 63, 1471 (2014). http://doi. org/10.1002/pi.4645.
  22. Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35, 8456 (2002). http://doi.org/10.1021/ma020444a.
  23. Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int, 55, 825 (2006). http://doi.org/10.1002/ pi.2040.
  24. Seo MK, Park SJ. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Mater Sci Eng B, 164, 106 (2009). http://doi.org/10.1016/j.mseb.2009.08.005.
  25. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon, 42, 1723 (2004). http://doi.org/10.1016/j.carbon.2004.03.006.
  26. Tang K, Li Y, Cao H, Su C, Zhang Z, Zhang Y. Amorphous-crystalline $TiO_2$/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor. Electrochim Acta, 190, 678 (2016). http://doi.org/10.1016/j.electacta.2015.12.209.
  27. Ra EJ, Raymundo-Pinero E, Lee YH, Beguin F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon, 47, 2984 (2009). http://doi.org/10.1016/j.carbon. 2009.06.051.
  28. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://doi. org/10.1016/j.jcis.2007.10.024.
  29. Liu X, Du G, Zhu J, Zeng Z, Zhu X. NiO/$LaNiO_3$ film electrode with binder-free for high performance supercapacitor. Appl Surf Sci, 384, 92 (2016). http://doi.org/10.1016/j.apsusc.2016.05.005.
  30. Sinprachim T, Phumying S, Maensiri S. Electrochemical energy storage performance of electrospun $AgO_x-MnO_x$/CNF composites. J Alloys Compd, 677, 1 (2016). http://doi.org/10.1016/j.jallcom. 2016.03.174.
  31. Xie Q, Zhou S, Zheng A, Xie C, Yin C, Wu S, Zhang Y, Zhao P. Sandwich-like nitrogen-enriched porous carbon/graphene composites as electrodes for aqueous symmetric supercapacitors with high energy density. Electrochim Acta, 189, 22 (2016). http://doi. org/10.1016/j.electacta.2015.12.087.
  32. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem Phys Lett, 404, 53 (2005). http://doi.org/10.1016/j.cplett.2005.01.074.
  33. Hulicova‐Jurcakova D, Seredych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen‐ and oxygen‐containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater, 19, 438 (2009). http://doi.org/10.1002/adfm.200801236.