DOI QR코드

DOI QR Code

Capacitance behaviors of conducting polymer-coated graphene nanosheets composite electrodes containing multi-walled carbon nanotubes as additives

  • Kim, Hoe-Seung (School of Chemical and Biochemical Engineering, Pusan National University) ;
  • Jung, Yongju (Department of Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (School of Chemical and Biochemical Engineering, Pusan National University)
  • Received : 2017.02.23
  • Accepted : 2017.05.08
  • Published : 2017.07.31

Abstract

Keywords

References

  1. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41, 797 (2012). https://doi.org/10.1039/C1CS15060J.
  2. Ramadoss A, Kim SJ. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochim Acta, 136, 105 (2014). https://doi.org/10.1016/j.electacta. 2014.05.014.
  3. Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, Mousavi MF, Kaner RB. Graphene-based materials for flexible supercapacitors. Chem Soc Rev, 44, 3639 (2015). https://doi.org/10.1039/ c4cs00316k.
  4. Kim Y, Kim S. Direct growth of cobalt aluminum double hydroxides on graphene nanosheets and the capacitive properties of the resulting composites. Electrochim Acta, 163, 252 (2015). https://doi.org/10.1016/j.electacta.2015.02.103.
  5. Oh M, Kim S. Synthesis and electrochemical analysis of polyaniline/$TiO_2$ composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid. Electrochim Acta, 78, 279 (2012). https://doi.org/10.1016/j.electacta.2012.05.109.
  6. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). https://doi.org/10.1016/s0008-6223(00)00183-4.
  7. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS. Activated graphenebased carbons as supercapacitor electrodes with macro- and mesopores. Acs Nano, 7, 6899 (2013). https://doi.org/10.1021/ nn402077v.
  8. Huang Y, Liang J, Chen Y. An overview of the applications of graphene- based materials in supercapacitors. Small, 8, 1805 (2012). https://doi.org/10.1002/smll.201102635.
  9. Chen H, Hu L, Chen M, Yan Y, Wu L. Nickel-Cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater, 24, 934 (2014). https://doi. org/10.1002/adfm.201301747.
  10. Kim Y, Kim S. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property. Bull Korean Chem Soc, 36, 665 (2015).
  11. Mondal S, Rana U, Malik S. Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun, 51, 12365 (2015). https://doi.org/10.1039/ c5cc03981a.
  12. Zhang H, Wang J, Shan Q, Wang Z, Wang S. Tunable electrode morphology used for high performance supercapacitor: polypyrrole nanomaterials as model materials. Electrochim Acta, 90, 535 (2013). https://doi.org/10.1016/j.electacta.2012.12.045.
  13. Kim J, Kim S. Preparation and electrochemical analysis of graphene/ polyaniline composites prepared by aniline polymerization. Res Chem Intermed, 40, 2519 (2014). https://doi.org/10.1007/ s11164-014-1663-0.
  14. Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y. Solid-state high performance flexible supercapacitors based on polypyrrole-$MnO_2$- carbon fiber hybrid structure. Sci Rep, 3, 2286 (2013). https://doi. org/10.1038/srep02286.
  15. Kim J, Kim S. Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim Acta, 119, 11 (2014). https://doi. org/10.1016/j.electacta.2013.11.187.
  16. Oh M, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). https://doi.org/10.1016/j.synthmet.2012.02.021.
  17. Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF. Polyaniline/ multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta, 55, 3904 (2010). https://doi.org/10.1016/j.electacta.2010.02.022.
  18. Qu Q, Zhu Y, Gao X, Wu Y. Core-shell structure of polypyrrole grown on $V_2O_5$ nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater, 2, 950 (2012). https://doi. org/10.1002/aenm.201200088.
  19. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 38, 2520 (2009). https://doi. org/10.1039/B813846J.
  20. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Supercapacitor devices based on graphene materials. J Phys Chem C, 113, 13103 (2009). https://doi.org/10.1021/jp902214f.
  21. Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources, 196, 1 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084.
  22. Fan LZ, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors. Electroche Commun, 8, 937 (2006). https://doi.org/10.1016/j.elecom.2006.03.035.
  23. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.
  24. Kim J, Park SJ, Kim S. Capacitance behaviors of polyaniline/ graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Lett, 14, 51 (2013). https://doi.org/10.5714/ cl.2012.14.1.051.
  25. Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta, 88, 519 (2013). https://doi.org/10.1016/j.electacta. 2012.10.082.
  26. Kim M, Lee C, Seo YD, Cho S, Kim J, Lee G, Kim YK, Jang J. Fabrication of various conducting polymers using graphene oxide as a chemical oxidant. Chem Mater, 27, 6238 (2015). https://doi. org/10.1021/acs.chemmater.5b01408.