DOI QR코드

DOI QR Code

Fabrication of nitrogen doped ordered mesoporous carbon derived from glucosamine with hybrid capacitive behaviors

  • Zhang, Deyi (College of Petrochemical Technology, Lanzhou University of Technology) ;
  • Han, Mei (College of Petrochemical Technology, Lanzhou University of Technology) ;
  • Li, Yubing (College of Petrochemical Technology, Lanzhou University of Technology) ;
  • Wang, Bing (College of Petrochemical Technology, Lanzhou University of Technology) ;
  • Wang, Yi (College of Petrochemical Technology, Lanzhou University of Technology) ;
  • Wang, Kunjie (College of Petrochemical Technology, Lanzhou University of Technology) ;
  • Feng, Huixia (College of Petrochemical Technology, Lanzhou University of Technology)
  • Received : 2016.09.01
  • Accepted : 2017.03.23
  • Published : 2017.07.31

Abstract

This paper introduces a nitrogen-doped ordered mesoporous carbon (NOMC) derived from glucosamine with hybrid capacitive behaviors, achieved by successfully combining electrical double-layer capacitance with pseudo-capacitance behaviors. The nitrogen doping content of the fabricated NOMC reached 7.4 at% while its specific surface area ($S_{BET}$) and total pore volume reached $778m^2g^{-1}$ and $1.17cm^3g^{-1}$, respectively. A dual mesoporous structure with small mesopores centered at 3.6 nm and large mesopores centered at 9.9 nm was observed. The specific capacitance of the reported materials reached up to $328Fg^{-1}$, which was 2.1 times higher than that of pristine CMK-3. The capacitance retention rate was found to be higher than 87.9% after 1000 charge/discharge cycles. The supplementary pseudocapacitance as well as the enhanced wettability and conductivity due to the incorporation of nitrogen heteroatoms within the carbon matrixes were found to be responsible for the excellent capacitive performance of the reported NOMC materials.

Keywords

References

  1. Lin T, Chen IW, Liu F, Yang C, Bi H, Xu F, Huang F. Nitrogendoped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 350, 1508 (2015). http://doi. org/10.1126/science.aab3798.
  2. Zhang D, Zheng L, Ma Y, Lei L, Li Q, Li Y, Luo H, Feng H, Hao Y. Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Interfaces, 6, 2657 (2014). http://doi.org/10.1021/ am405128j.
  3. Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S. Nitrogendoped hierarchical porous carbon materials prepared from metaaminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta, 153, 68 (2015). http://doi. org/10.1016/j.electacta.2014.11.075.
  4. Shi Q, Zhang R, Lv Y, Deng Y, Elzatahrya AA, Zhao D. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon, 84, 335 (2015). http://doi. org/10.1016/j.carbon.2014.12.013.
  5. Einert M, Wessel C, Badaczewski F, Leichtweis T, Eufinger C, Janek J, Yuan J, Antonietti M, Smarsly BM. Nitrogen-doped carbon electrodes: influence of microstructure and nitrogen configuration on the electrical conductivity of carbonized polyacrylonitrile and poly(ionic liquid) blends. Macromol Chem Phys, 216, 1930 (2015). http://doi.org/10.1002/macp.201500169.
  6. Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 9, 2556 (2015). https://doi.org/10.1021/nn506394r.
  7. Zhang D, Lei L, Shang Y, Wang K, Wang Y. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level. Appl Surf Sci, 360, 807 (2016). http://doi.org/10.1016/j.apsusc.2015.11.071.
  8. Zhou DD, Li WY, Dong XL, Wang YG, Wang CX, Xia YY. A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. J Mater Chem A, 1, 8488 (2013). http://doi. org/10.1039/c3ta11667k.
  9. Wang X, Lee JS, Zhu Q, Liu J, Wang Y, Dai S. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem Mater, 22, 2178 (2010). http://doi. org/10.1021/cm100139d.
  10. Wang X, Liu CG, Neff D, Fulvio PF, Mayes RT, Zhamu A, Fang Q, Chen G, Meyer HM, Jang BZ, Dai S. Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J Mater Chem A, 1, 7920 (2013). http://doi.org/10.1039/C3TA11342F.
  11. Sheng X, Daems N, Geboes B, Kurttepeli M, Bals S, Breugelmans T, Hubin A, Vankelecom IFJ, Pescarmona PP. N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of $O_2$ to $H_2O_2$. Appl Catal B, 176, 212 (2015). http://doi.org/10.1016/j. apcatb.2015.03.049.
  12. Lu J, Bo X, Wang H, Guo L. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochim Acta, 108, 10 (2013). http://doi.org/10.1016/j.electacta.2013.06.066.
  13. Zhou S, Xu H, Yuan Q, Shen H, Zhu X, Liu Y, Gan W. N-doped ordered mesoporous carbon originated from a green biological dye for electrochemical sensing and high-pressure $CO_2$ storage. ACS Appl Mater Interfaces, 8, 918 (2016). http://doi.org/10.1021/ acsami.5b10502.
  14. Yang DS, Bhattacharjya D, Song MY, Razmjooei F, Ko J, Yang QH, Yu JS. Nitrogen-doped ordered mesoporous carbon with different morphologies for the oxygen reduction reaction: effect of iron species and synergy of textural properties. ChemCatChem, 7, 2882 (2015). http://doi.org/10.1002/cctc.201500340.
  15. Wang G, Zhang J, Kuang S, Zhou J, Xing W, Zhuo S. Nitrogendoped hierarchical porous carbon as an efficient electrode material for supercapacitors. Electrochim Acta, 153, 273 (2015). http://doi. org/10.1016/j.electacta.2014.12.006.
  16. Song LT, Wu ZY, Liang HW, Zhou F, Yu ZY, Xu L, Pan Z, Yu SH. Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy, 19, 117 (2016). http://doi.org/10.1016/j.nanoen.2015.10.004.
  17. Shen G, Sun X, Zhang H, Liu Y, Zhang J, Meka A, Zhou L, Yu C. Nitrogen-doped ordered mesoporous carbon single crystals: aqueous organic-organic self-assembly and superior supercapacitor performance. J Mater Chem A, 3, 24041 (2015). https://doi. org/10.1039/c5ta06129f.
  18. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for $CO_2$ capture and supercapacitors. Adv Funct Mater, 23, 2322 (2013). http://doi.org/10.1002/adfm.201202764.
  19. Song Y, Li L, Wang Y, Wang C, Guo Z, Xia Y. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors. ChemPhysChem, 15, 2084 (2014). http://doi. org/10.1002/cphc.201402250.
  20. Wan K, Long GF, Liu MY, Du L, Liang ZX, Tsiakaras P. Nitrogendoped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction. Appl Catal B, 165, 566 (2015). http://doi.org/10.1016/j.apcatb.2014.10.054.
  21. Long G, Wan K, Liu M, Li X, Liang Z, Piao J. Effect of pyrolysis conditions on nitrogen-doped ordered mesoporous carbon electrocatalysts. Chin J Catal, 36, 1197 (2015). http://doi.org/10.1016/ s1872-2067(15)60912-3.
  22. Chen H, Zhou M, Wang Z, Zhao S, Guan S. Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors. Electrochim Acta, 148, 187 (2014). http://doi.org/10.1016/j.electacta.2014.10.042.
  23. Li J, Li Z, Tong J, Xia C, Li F. Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction. RSC Adv, 5, 70010 (2015). http://doi.org/10.1039/C5RA10484J.
  24. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279, 548 (1998). http://doi.org/10.1126/science.279.5350.548.
  25. Qiu B, Pan C, Qian W, Peng Y, Qiu L, Yan F. Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J Mater Chem A, 1, 6373 (2013). http://doi. org/10.1039/C3TA10774D.
  26. Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xie AJ, Yu SH. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci, 7, 4095 (2014). http://doi.org/10.1039/C4EE02531H.
  27. Liu H, Jia M, Cao B, Chen R, Lv X, Tang R, Wu F, Xu B. Nitrogen- doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. J Power Sources, 319, 195 (2016). http://doi.org/10.1016/j.jpowsour.2016.04.040.
  28. Lei Z, Xiao Y, Dang L, Lu M, You W. Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. Microporous Mesoporous Mater, 96, 127 (2006). http://doi.org/10.1016/j.micromeso. 2006.06.031.
  29. Zhang M, Sun A, Meng Y, Wang L, Jiang H, Li G. High activity ordered mesoporous carbon-based solid acid catalyst for the esterification of free fatty acids. Microporous Mesoporous Mater, 204, 210 (2015). http://doi.org/10.1016/j.micromeso.2014.11.027.
  30. Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Reda M, Parmentier J, Patarin J, Beguin F. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. Mater Sci Eng B, 108, 148 (2004). http://doi.org/10.1016/j. mseb.2003.10.096.
  31. Li ZY, Akhtar MS, Yang OB. Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: enhanced doublelayer electrochemical properties. J Alloys Compd, 653, 212 (2015). http://doi.org/10.1016/j.jallcom.2015.08.275.
  32. Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater, 22, 1392 (2010). http://doi.org/10.1021/cm902876u.
  33. Laheaar A, Przygocki P, Abbas Q, Beguin F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun, 60, 21 (2015). http://doi.org/10.1016/j.elecom.2015.07.022.