References
- Bahar, B., Monahan, F.J., Moloney, A.P., Schmidt, O., MacHugh, D.E., and Sweeney, T. (2007). Long-term stability of RNA in post-mortem bovine skeletal muscle, liver and subcutaneous adipose tissues. BMC Mol. Biol. 8, 108-120. https://doi.org/10.1186/1471-2199-8-108
- Bauer, M. (2007). RNA in forensic science. Forensic Sci. Int. Genet. 1, 69-74. https://doi.org/10.1016/j.fsigen.2006.11.002
- Bauer, M., Gramlich, I., Polzin, S., and Patzelt, D. (2003). Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study. Leg. Med. 5, 220-227. https://doi.org/10.1016/j.legalmed.2003.08.001
- Brennan-Laun, S.E., Ezelle, H.J., Li, X.L., and Hassel, B.A. (2014). RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J. Interferon Cytokine Res. 34, 275-288. https://doi.org/10.1089/jir.2013.0147
- Chung, U., Seo, J.S., Kim, Y.H., Son, G.H., and Hwang, J.J. (2012). Quantitative analyses of postmortem heat shock protein mRNA profiles in the occipital lobes of human cerebral cortices: implications in cause of death. Mol. Cells 34, 473-480. https://doi.org/10.1007/s10059-012-0214-z
- Degen, W.G., Aarssen, Y., Pruijn, G.J., Utz, P.J., and Venrooij, W.J. (2000a). The fate of U1 snRNP during anti-Fas induced apoptosis: specific cleavage of the U1 snRNA molecule. Cell Death Differ. 7, 70-79. https://doi.org/10.1038/sj.cdd.4400617
- Degen, W.G., Pruijn, G.J., Raats, J.M., and Venrooij, W.J. (2000b). Caspase-dependent cleavage of nucleic acids. Cell Death Differ. 7, 616-627. https://doi.org/10.1038/sj.cdd.4400672
- Goff, M.L. (1993). Estimation of postmortem interval using arthropod development and successional patterns. Forensic. Sci. Rev. 5, 81-94.
- Gonzalez-Herrera, L., Valenzuela, A., Marchal, J.A., Lorente, J.A., and Villanueva, E. (2013). Studies on RNA integrity and gene expression in human myocardial tissue, pericardial fluid and blood, and its postmortem stability. Forensic. Sci. Int. 232, 218-228. https://doi.org/10.1016/j.forsciint.2013.08.001
- Gorski, J.L., Gonzalez, I.L., and Schmickel, R.D. (1987). The secondary structure of human 28S rRNA: the structure and evolution of a mosaic rRNA gene. J. Mol. Evol. 24, 236-251. https://doi.org/10.1007/BF02111237
- Heinrich, M., Matt, K., Lutz-Bonengel, S., and Schmidt, U. (2007). Successful RNA extraction from various human postmortem tissues. Int. J. Leg. Med. 121, 136-142. https://doi.org/10.1007/s00414-006-0131-9
- Henssge, C., and Madea, B. (2007). Estimation of the time since death. Forensic. Sci. Int. 165, 182-184. https://doi.org/10.1016/j.forsciint.2006.05.017
- Houge, G., Doskeland, S.O., Boe, E., and Lanotte, M. (1993). Selective cleavage of 28S rRNA variable regions V3 and V13 in myeloid leukemia cell apoptosis. FEBS Lett. 315, 16-20. https://doi.org/10.1016/0014-5793(93)81123-H
- Houge, G., Robaye, B., Eikhom, T.S., Golstein, J., Mellgren, G., Gjertsen, B.T., Lanotte, M., and Doskeland, S.O. (1995). Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol. Cell. Biol. 15, 2051-2062. https://doi.org/10.1128/MCB.15.4.2051
- Koppelkamm, A., Vennemann, B., Fracasso, T., Lutz-Bonengel, S., Schmidt, U., and Heinrich, M. (2010). Validation of adequate endogenous reference genes for the normalisation of qPCR gene expression data in human post mortem tissue. Int. J. Leg. Med. 124, 371-380. https://doi.org/10.1007/s00414-010-0433-9
- Li, W.C., Ma, K.J., Lv, Y.H., Zhang, P., Pan, H., Zhang, H., Wang, H.J., Ma, D., and Chen, L. (2014). Postmortem interval determination using 18S-rRNA and microRNA. Sci. Justice 54, 307-310. https://doi.org/10.1016/j.scijus.2014.03.001
- Lv, Y.H., Ma, J.L., Pan, H., Zhang, H., Li, W.C., Xue, A.M., Wang, H.J., Ma, K.J., and Chen, L. (2016). RNA degradation as described by a mathematical model for postmortem interval determination. J. Forensic. Leg. Med. 44, 43-52. https://doi.org/10.1016/j.jflm.2016.08.015
- Maeda, H., Zhu, B.L., Ishikawa, T., and Michiue, T. (2010) Forensic molecular pathology of violent deaths. Forensic Sci. Int. 203, 83-92. https://doi.org/10.1016/j.forsciint.2010.07.024
- Maeda, H., Ishikawa, T., and Michiue, T. (2014). Forensic molecular pathology: its impacts on routine work, education and training. Leg. Med. (Tokyo) 16, 61-69. https://doi.org/10.1016/j.legalmed.2014.01.002
- Michot, B., Bachellerie, J.P., and Raynal, F. (1982). Sequence and secondary structure of mouse 28S rRNA 5' terminal domain. Organisation of the 5.8S-28S rRNA complex. Nucleic Acids Res. 10, 5273-5283. https://doi.org/10.1093/nar/10.17.5273
- Michot, B., Hassouna, N., and Bachellerie, J.P. (1984). Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Res. 12, 4259-4279. https://doi.org/10.1093/nar/12.10.4259
- Nadano, D., and Sato, T.A. (2000). Caspase-3-dependent and - independent degradation of 28S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. J. Biol. Chem. 275, 13967-13973. https://doi.org/10.1074/jbc.275.18.13967
- Naito, T., Yokogawa, T., Takatori, S., Goda, K., Hiramoto, A., Sato, A., Kitade, Y., Sasaki, T., Matsuda, A., Fukushima, M., et al. (2009). Role of RNase L in apoptosis induced by 1-(3-C-ethynyl-beta-D-ribopentofuranosyl) cytosine. Cancer Che-mother. Pharmacol. 63, 837-850.
- Poor, V.S., Lukacs, D., Nagy, T., Racz, E., and Sipos, K. (2016). The rate of RNA degradation in human dental pulp reveals post-mortem interval. Int. J. Legal Med. 130, 615-619. https://doi.org/10.1007/s00414-015-1295-y
- Rienzo, M., and Casamassimi, A. (2016). Integrator complex and transcription regulation: Recent findings and pathophysiology. Biochim. Biophys. Acta 1859, 1269-1280. https://doi.org/10.1016/j.bbagrm.2016.07.008
- Rutjes, S.A., van der Heijden, A., Utz, P.J., van Venrooij, W.J., and Pruijn, G.J. (1999). Rapid nucleolytic degradation of the small cytoplasmic Y RNAs during apoptosis. J. Biol. Chem. 274, 24799-24807. https://doi.org/10.1074/jbc.274.35.24799
- Sampaio-Silva, F., Magalhaes, T., Carvalho, F., Dinis-Oliveira, R.J., and Silvestre, R. (2013). Profiling of RNA degradation for estimation of post mortem interval. PLoS One 8, e56507. https://doi.org/10.1371/journal.pone.0056507
- Smart, J.L., and Kaliszan, M. (2012). The post mortem temperature plateau and its role in the estimation of time of death. A review. Leg. Med. (Tokyo) 14, 55-62. https://doi.org/10.1016/j.legalmed.2011.11.002
- Sobue, S., Sakata, K., Sekijima, Y., Qiao, S., Murate, T., and Ichihara, M. (2016). Characterization of gene expression profiling of mouse tissues obtained during the postmortem interval. Exp. Mol. Pathol. 100, 482-492. https://doi.org/10.1016/j.yexmp.2016.05.007
- Son, G.H., Park, S.H., Kim, Y., Kim, J.Y., Kim, J.W., Chung, S., Kim, Y.H., Kim, H., Hwang, J.J., and Seo, J.S. (2014). Postmortem mRNA expression patterns in left ventricular myocardial tissues and their implications for forensic diagnosis of sudden cardiac death. Mol. Cells 37, 241-247. https://doi.org/10.14348/molcells.2014.2344
- Vennemann, M., and Koppelkamm, A. (2010a). mRNA profiling in forensic genetics I: Possibilities and limitations. Forensic. Sci. Int. 203, 71-75. https://doi.org/10.1016/j.forsciint.2010.07.006
- Vennemann, M., and Koppelkamm, A. (2010b). Postmortem mRNA profiling II: Practical considerations. Forensic. Sci. Int. 203, 76-82. https://doi.org/10.1016/j.forsciint.2010.07.007
- Walker, T.A., Johnson, K.D., Olsen, G.J., Peters, M.A., and Pace, N.R. (1982). Enzymatic and chemical structure mapping of mouse 28S ribosomal ribonucleic acid contacts in 5.8S ribosomal ribonucleic acid. Biochemistry 21, 2320-2329. https://doi.org/10.1021/bi00539a008
- Zhang, Y., Najmi, S.M., and Schneider, D.A. (2016). Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? Biochim. Biophys. Acta 1860, 246-255. https://doi.org/10.1016/j.bbagen.2015.06.010
Cited by
- Quantitative analysis of noncoding RNA from paired fresh and formalin-fixed paraffin-embedded brain tissues vol.134, pp.3, 2017, https://doi.org/10.1007/s00414-019-02210-1
- Effect of preservation time of formalin-fixed paraffin-embedded tissues on extractable DNA and RNA quantity vol.48, pp.6, 2017, https://doi.org/10.1177/0300060520931259
- MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature vol.11, pp.1, 2017, https://doi.org/10.3390/diagnostics11010064