DOI QR코드

DOI QR Code

FIBONACCI AND LUCAS NUMBERS ASSOCIATED WITH BROCARD-RAMANUJAN EQUATION

  • Received : 2016.09.03
  • Accepted : 2017.02.02
  • Published : 2017.07.31

Abstract

We explicitly solve the diophantine equations of the form $$A_{n_1}A_{n_2}{\cdots}A_{n_k}{\pm}1=B^2_m$$, where $(A_n)_{n{\geq}0}$ and $(B_m)_{m{\geq}0}$ are either the Fibonacci sequence or Lucas sequence. This extends the result of D. Marques [9] and L. Szalay [13] concerning a variant of Brocard-Ramanujan equation.

Keywords

Acknowledgement

Supported by : Science Silpakorn University

References

  1. B. C. Berndt and W. F. Galway, On the Brocard-Ramanujan Diophantine equation n! + 1 = $m^2$, Ramanujan J. 4 (2006), no. 1, 41-42. https://doi.org/10.1023/A:1009873805276
  2. Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
  3. Brother A. Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972.
  4. R. D. Carmichael, On the numerical factors of the arithmetic forms ${\alpha}^{n}\;{\pm}\;{\beta}^{n}$, Ann. of Math.(2) 15 (1913), 30-48. https://doi.org/10.2307/1967797
  5. A. Dabrowski, On the Brocard-Ramanujan problem and generalizations, Colloq. Math. 126 (2012), no. 1, 105-110. https://doi.org/10.4064/cm126-1-7
  6. A. Dabrowski and M. Ulas, Variations on the Brocard-Ramanujan equation, J. Number Theory 133 (2013), no. 4, 1168-1185. https://doi.org/10.1016/j.jnt.2012.09.005
  7. Y. Kunrui, p-adic logarithmic forms and a problem of Erdos, Acta Math. 211 (2013), no. 2, 315-382. https://doi.org/10.1007/s11511-013-0106-x
  8. F. Luca, The Diophantine equation P(x) = n! and a result of M. Overholt, Glas. Mat. Ser. III 37 (2002), no. 2, 269-273.
  9. D. Marques, The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Port. Math. 68 (2011), no. 2, 185-189.
  10. P. Pongsriiam, Fibonacci and Lucas numbers which are one away from their products, submitted.
  11. P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP J. Algebra Number Theory Appl. 38 (2016), no. 4, 363-372. https://doi.org/10.17654/NT038040363
  12. C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math. 211 (2013), no. 2, 291-314. https://doi.org/10.1007/s11511-013-0105-y
  13. L. Szalay, Diophantine equations with binary recurrences associated to the Brocard-Ramanujan problem, Port. Math. 69 (2012), no. 3, 213-220. https://doi.org/10.4171/PM/1914
  14. M.Ward, The prime divisors of Fibonacci numbers, Pacific J. Math. 11 (1961), 379-386. https://doi.org/10.2140/pjm.1961.11.379