Acknowledgement
Supported by : Science Silpakorn University
References
-
B. C. Berndt and W. F. Galway, On the Brocard-Ramanujan Diophantine equation n! + 1 =
$m^2$ , Ramanujan J. 4 (2006), no. 1, 41-42. https://doi.org/10.1023/A:1009873805276 - Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75-122.
- Brother A. Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972.
-
R. D. Carmichael, On the numerical factors of the arithmetic forms
${\alpha}^{n}\;{\pm}\;{\beta}^{n}$ , Ann. of Math.(2) 15 (1913), 30-48. https://doi.org/10.2307/1967797 - A. Dabrowski, On the Brocard-Ramanujan problem and generalizations, Colloq. Math. 126 (2012), no. 1, 105-110. https://doi.org/10.4064/cm126-1-7
- A. Dabrowski and M. Ulas, Variations on the Brocard-Ramanujan equation, J. Number Theory 133 (2013), no. 4, 1168-1185. https://doi.org/10.1016/j.jnt.2012.09.005
- Y. Kunrui, p-adic logarithmic forms and a problem of Erdos, Acta Math. 211 (2013), no. 2, 315-382. https://doi.org/10.1007/s11511-013-0106-x
- F. Luca, The Diophantine equation P(x) = n! and a result of M. Overholt, Glas. Mat. Ser. III 37 (2002), no. 2, 269-273.
- D. Marques, The Fibonacci version of the Brocard-Ramanujan Diophantine equation, Port. Math. 68 (2011), no. 2, 185-189.
- P. Pongsriiam, Fibonacci and Lucas numbers which are one away from their products, submitted.
- P. Pongsriiam, Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP J. Algebra Number Theory Appl. 38 (2016), no. 4, 363-372. https://doi.org/10.17654/NT038040363
- C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math. 211 (2013), no. 2, 291-314. https://doi.org/10.1007/s11511-013-0105-y
- L. Szalay, Diophantine equations with binary recurrences associated to the Brocard-Ramanujan problem, Port. Math. 69 (2012), no. 3, 213-220. https://doi.org/10.4171/PM/1914
- M.Ward, The prime divisors of Fibonacci numbers, Pacific J. Math. 11 (1961), 379-386. https://doi.org/10.2140/pjm.1961.11.379