Comparing the dosimetric impact of fiducial marker according to density override method : Planning study

양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study

  • Sung, Doo Young (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Seyjoon (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Ji Hyun (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Yong Chul (Department of Radiation Oncology, Samsung Medical Center) ;
  • Park, Hee Chul (Department of Radiation Oncology, Samsung Medical Center) ;
  • Choi, Byoung Ki (Department of Radiation Oncology, Samsung Medical Center)
  • 성두영 (삼성서울병원 방사선종양학과) ;
  • 박세준 (삼성서울병원 방사선종양학과) ;
  • 박지현 (삼성서울병원 방사선종양학과) ;
  • 박용철 (삼성서울병원 방사선종양학과) ;
  • 박희철 (삼성서울병원 방사선종양학과) ;
  • 최병기 (삼성서울병원 방사선종양학과)
  • Published : 2017.06.30

Abstract

Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

목 적: 양성자 치료계획에서 metal 재질의 fiducial marker에 의한 선량 계산오차를 최소화하려면 density override의 적용은 매우 중요하다. 하지만 실제 metal 재질로 density override을 할 경우 정확한 contouring 및 range compensator 제작에 어려움이 있기에 본 연구에서는 fiducial marker의 주변 재질로 density override를 시행하고 fiducial marker의 위치, 재질, beam의 개수에 따른 선량분포를 비교, 분석하여 평가하고자 한다. 대상 및 방법: Water phantom을 이용하여 fiducial marker의 위치를 proton beam의 최대 비정 끝에서부터 1.5, 2.5, 4.0, 6.0 cm로 설정하고 재질로는 gold, steel, titanium으로 설정하여 실제 metal 재질 및 주변 재질로 density override를 적용한 치료계획을 세웠다. 또한 본원에서 양성자치료를 받은 간암 환자 1명을 선정하여 proton beam의 최대 비정 끝에서부터 0, 1.5, 3.5 cm로 설정하고 재질로는 gold, steel, titanium으로 설정하여 치료계획을 세웠다. Fiducial marker의 재질, 위치 및 beam의 개수에 따른 PTV 내에 Homogeneity Index(HI), Conformity Index(CI), 종양에 가장 근접한 Organ At Risk(OAR)인 Esophagus의 maximum dose을 평가 지표로 설정하고 비교 분석하였다. 결 과: Water phantom 및 간암 환자를 대상으로 한 치료계획에서 fiducial marker의 위치에 따른 Homogeneity Index를 분석한 결과 실제 metal 재질로 density override 했을 때보다 주변 재질로 density override했을 때 Homogeneity Index가 감소했으며 주변 재질의 density override에서 하나의 beam에 대해서는 최대 비정 끝에서 멀리 위치할수록, 두 개 이상의 beam에서는 isocenter에 가까이 위치할수록 Homogeneity Index가 증가하였다. Fiducial marker의 위치에 따른 Conformity Index 및 종양 주위 OAR의 maximum dose를 분석한 결과 주변 재질로 density override 했을 때 Conformity Index는 1에 가까웠으며 OAR의 maximum dose는 크게 감소했다. 결 론: 일반적으로 임상에서 사용하는 작은 fiducial marker에 대해서 실제 metal 재질이 아닌 주변 재질로 density override 했을 때 선량 균등도 및 target coverage를 높이는 동시에 주변 정상조직에 대한 선량을 줄일 수 있었다. 따라서 fiducial marker을 최대한 피해서 치료계획을 세우는 것이 바람직하지만 beam path 상에 fiducial marker가 있는 경우 주변 재질의 density override 시행함으로써 보다 정밀한 양성자 치료 효과를 기대할 수 있을 것으로 사료된다.

Keywords

References

  1. Urie MM, Sisterson JM, Koehler AM, et al.: Proton beam penumbra effects of separation between patient and beam modifying devices. Medical Physics 1986;13(5):734-741 https://doi.org/10.1118/1.595974
  2. Sorcini B, Tilikidis A: Clinical application of image- guided radiotherapy, IGRT (on the Varian OBI platform) Cancer Radiother 2006;10(5):252-257 https://doi.org/10.1016/j.canrad.2006.05.012
  3. Sorensen SP, Chow PE, Kriminski S, et al.: Imageguided radiotherapy using a mobile kilovoltage xray device. Med Dosim 2006;31(1):40-50 https://doi.org/10.1016/j.meddos.2005.12.003
  4. Huntzinger C, Munro P, Johnson S, et al.: Dynamic targeting image-guided radiotherapy. Med Dosim 2006;31(2):113-125 https://doi.org/10.1016/j.meddos.2005.12.014
  5. Engelsman M, Lu HM, Herrup D, et al: Commissioning a passive-scattering proton therapy nozzle for accurate SOBP delivery. Phys Med 2009;36:2172-2180 https://doi.org/10.1118/1.3121489
  6. Wieszczycka W, Scharf WH: Proton radiotherapy accelerators. 1st ed. Singapore: World Scientific Publising Co. Pte. Ltd., 2001;1-23
  7. Oliver Jakel: Ranges of ions in metals for use in particle treatment planning. Phys Med 2006;51:173-177
  8. Moyers MF, Miller DW, Bush DA, et al: Methodologies and tools for proton beam design for lung tumors. Int J Radiat Oncol Biol Phys. 2001;49(5):1429-38 https://doi.org/10.1016/S0360-3016(00)01555-8
  9. Moyers MF, Miller DW: Range, range modulation, and field radius requirements for proton therapy of prostate cancer. Technol Cancer Res Treat. 2003;2(5):445-7 https://doi.org/10.1177/153303460300200509