Abstract
Recently, distributed compressed video sensing (DCVS) has been actively studied in order to achieve a low complexity video encoder by integrating both compressed sensing and distributed video coding characteristics. Conventionally, a motion compensated block compressed sensing with smoothed projected Landweber (MC-BCS-SPL) has been considered as an effective scheme of DCVS with all compressed sensing frames pursuing the simplest sampling. In this scheme, video frames are separately classified into key frames and WZ frames. However, when reconstructing WZ frame with conventional MC-BCS-SPL scheme at the decoder side, the visual qualities are poor for temporally active video sequences. In this paper, to overcome the drawbacks of the conventional scheme, an enhanced MC-BCS-SPL algorithm is proposed, which corrects the initial image with reference to the key frame using a high correlation between adjacent key frames. The proposed scheme is analyzed with respect to GOP (Group of Pictures) structuring method. Experimental results show that the proposed method performs better than conventional MC-BCS-SPL in rate-distortion.
최근에 낮은 복잡도의 부호화기를 구현하기 위해 분산 비디오 부호화 와 압축센싱을 결합한 구조로서 분산 압축 비디오 센싱기술에 대한 연구가 활발히 진행되고 있다. 기존에 움직임 보상 블록 압축센싱 기술(MC-BCS-SPL)은 가장 간단한 표본화를 추구하면서 모든 압축센싱 프레임을 갖는 DCVS방식중의 효과적인 방안으로 다루어져 왔다. 이 방식은 키 프레임과 WZ 프레임으로 분리하여 압축센싱한다. 그러나 MC-BCS-SPL 방식은 복호화기에서 WZ 프레임을 복원할 때, 움직임이 큰 영상 시퀀스의 경우에 화질 저하가 발생시키는 단점이 존재한다. 본 논문에서는 이러한 기존의 문제점을 극복하기 위한 개선된 MC-BCS-SPL 방식을 제안한다. 제안한 방식은 연속적인 키 프레임 간 에 존재하는 높은 상관관계를 이용하여 키 프레임을 참조함으로써 초기 영상을 보정한다. GOP 예측 구조 방식에 따른 율-왜곡 성능을 비교한다. 다양한 실험 결과를 통하여 제안하는 알고리즘이 기존 알고리즘보다 더 좋은 화질을 제공함을 보여준다.