DOI QR코드

DOI QR Code

Connectivity of the GAODV Routing Protocol

GAODV 라우팅 프로토콜의 연결성

  • Choi, Youngchol (Ocean System Engineering Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • Received : 2017.05.19
  • Accepted : 2017.06.14
  • Published : 2017.07.31

Abstract

The route request (RREQ) packet is selectively re-broadcasted in the routing protocols that improve the broadcast storm problem of the ad-hoc on-demand routing protocol (AODV). However, in a low node density scenario, the connectivity of these selective rebroadcast schemes becomes less than that of the AODV. In order to clarify the requirements of these selective re-broadcast routing protocols, it is necessary to investigate the relationship between the node density and the connectivity. In this paper, we drive a probability to preserve the connectivity of the GAODV at an intermediate rebroadcast node. In addition, we present an intuitive method to approximate the end-to-end connectivity of the GAODV. We draw the required node density to guarantee the connectivity of 0.9 and 0.99 through computer simulations, and verify the validity of the derived theoritical connectivity by comparing with the simulation results.

Ad-hoc on-demand distance vector (AODV) 경로요청 패킷의 브로드캐스트 스톰 문제를 개선하기 위해 제안된 라우팅 프로토콜들은 경로 요청 패킷을 선택적으로 재방송하는데, 노드 밀집도가 낮은 시나리오에서 이러한 선택적 재방송 기법들의 연결성은 AODV보다 작아지게 된다. 경로 요청 패킷을 선택적으로 재방송하는 라우팅 프로토콜의 동작 요구 조건을 명확하게 하기 위해서는, 연결성과 노드 밀집도 사이의 관계 규명이 필요하다. 본 논문에서는 노드들이 균일 분포로 배치되었다는 가정 하에, 임의의 위치에서 geographical AODV (GAODV)의 연결성이 손상되지 않을 확률을 유도한다. 또한, 연결성이 손상되지 않을 확률을 이용해서 GAODV의 종단 간 연결성을 근사할 수 있는 직관적인 방안을 제시한다. 시뮬레이션을 통하여 0.9 및 0.99의 연결성을 보장하기 위한 노드 밀집도를 도출하고, 이론적인 결과와 비교함으로써, 이론적으로 유도된 연결성의 유효성을 보인다.

Keywords

References

  1. A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Boloni, and D. Turgut, "Routing protocols in ad hoc networks: A survey," Computer Networks, vol. 55, no. 13, pp. 3032-3080, Sept. 2011. https://doi.org/10.1016/j.comnet.2011.05.010
  2. C. E. Perkins and E. M. Royer, "Ad-hoc on-demand distance vector routing," in Proceeding of the 2nd IEEE workshop on Mobile Computing Systems and Applications, pp. 90-100, Feb. 1999.
  3. S. Ni, Y. Tseng, Y. Chen, and J. Sheu, "The broadcast storm problem in a mobile ad hoc network," in Proceeding of the ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), Seattle: WA, pp. 151-162, Aug. 1999.
  4. Y. Ko and N. Vaidya, "Location-aided routing (LAR) in mobile ad hoc networks," Wireless Networks, vol. 6, no. 4, pp. 307-321, Sept. 2000. https://doi.org/10.1023/A:1019106118419
  5. X. M. Zhang, E. B.Wang, J. J. Xia, and D. K. Sung, "An estimated distance-based routing protocol for mobile ad hoc networks," IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3473-3484, Sep. 2011. https://doi.org/10.1109/TVT.2011.2158865
  6. X. M. Zhang, E. B. Wang, J. J. Xia, and D. K. Sung, "A neighbor coverage based probabilistic rebroadcast for reducing routing overhead in mobile ad hoc networks," IEEE Transactions on Mobile Computing, vol. 12, no. 3, pp. 424-433, Mar. 2013. https://doi.org/10.1109/TMC.2011.277
  7. Y. Wang and J. J. G. Luna Aceves, "On reducing routing overhead and redundancy in mobile ad hoc networks," in Proceeding of the International Conference on Computing, Networking and Communications (ICNC), pp. 202-206, 2015.
  8. M. Nikolov and Z. J. Haas, "Towards optimal broadcast in wireless networks," IEEE Transactions on Mobile computing, vol. 14, no. 7, pp. 1530-1544, 2015. https://doi.org/10.1109/TMC.2014.2356466
  9. Y. Choi and Y. Lim, "Geographical AODV protocol for multi-hop maritime communications," in Proceeding of the OCEANS'13, pp. 1-3, June 2013.
  10. Y. Choi and Y. Lim, "A Novel Geographical On-Demand Routing Protocol," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 6, pp. 1092-1099, June 2017. https://doi.org/10.6109/jkiice.2017.21.6.1092