DOI QR코드

DOI QR Code

Hybrid Tone Mapping Technique Considering Contrast and Texture Area Information for HDR Image Restoration

HDR 영상 복원을 위해 대비와 텍스쳐 영역 정보를 고려한 혼합 톤 매핑 기법

  • Kang, Ju-Mi (Department of Intelligent Robotics, Hanyang University) ;
  • Park, Dae-Jun (Department of Intelligent Robotics, Hanyang University) ;
  • Jeong, Jechang (Department of Intelligent Robotics, Hanyang University)
  • 강주미 (한양대학교 지능형로봇공학과) ;
  • 박대준 (한양대학교 지능형로봇공학과) ;
  • 정제창 (한양대학교 지능형로봇공학과)
  • Received : 2017.05.10
  • Accepted : 2017.07.04
  • Published : 2017.07.30

Abstract

In this paper, we propose a Tone Mapping Operator (TMO) that preserves global contrast and precisely preserves boundary information. In order to reconstruct a High Dynamic Range (HDR) image to a Low Dynamic Range (LDR) display by using Threshold value vs. Intensity value (TVI) based on Human Visual System (HVS) and contrast value. As a result, the global contrast of the image can be preserved. In addition, by combining the boundary information detected using Guided Image Filtering (GIF) and the detected boundary information using the spatial masking of the Just Noticeable Difference (JND) model, And improved the perceived image quality of the output image. The conventional TMOs are classified into Global Tone Mapping (GTM) and Local Tone Mapping (LTM). GTM preserves global contrast, has the advantages of simple implementation and fast execution time, but it has a disadvantage in that the boundary information of the image is lost and the regional contrast is not preserved. On the other hand, the LTM preserves the local contrast and boundary information of the image well, but some areas are expressed unnatural like the occurrence of the halo artifact phenomenon in the boundary region, and the calculation complexity is higher than that of GTM. In this paper, we propose TMO which preserves global contrast and combines the merits of GTM and LTM to preserve boundary information of images. Experimental results show that the proposed tone mapping technique has superior performance in terms of cognitive quality.

본 논문은 전역적 대비를 보존하는 동시에 경계 정보를 정확히 보존할 수 있는 혼합 톤 매핑 기법 (Tone Mapping Operator: TMO)을 제안한다. 우선, 넓은 동적 영역 (High Dynamic Rangae: HDR) 영상을 낮은 동적 영역 (Low Dynamic Range: LDR) 디스플레이에 적합하게 압축하기 위해 인간의 시각 시스템 (Human Visual System: HVS)에 기반한 임계 값 대 밝기 값 (Threshold vs. Intensity: TVI) 함수와 영상의 대비를 사용하였으며 이에 따라 영상의 전역적인 대비를 보존할 수 있었다. 또한, 가이디드 영상 필터링 (Guided Image Filtering: GIF)을 이용하여 검출된 경계 정보와 변화감지역 (Just Noticeable Difference: JND) 모델의 공간적 마스킹을 이용하여 검출된 경계 정보를 결합함으로써 영상의 경계를 보존하고 출력 영상의 인지적 화질을 향상시켰다. 기존에 TMO들은 크게 전역적 톤 매핑 (Global Tone Mapping: GTM)과 지역적 톤 매핑 (Local Tone Mapping: LTM)으로 분류되었다. GTM은 전역적인 대비를 보존하며 구현이 단순해 실행시간이 빠르다는 장점이 있지만 영상의 경계 정보가 손실되며 지역적 대비를 보존하지 못하는 단점이 있었다. 반면 LTM은 영상의 지역적 대비와 경계 정보를 잘 보존하였지만 경계 영역에서의 헤일로 열화 현상의 발생과 같이 일부 영역이 부자연스럽게 표현되는 경우가 발생하였으며 GTM과 비교하여 높은 계산 복잡도를 가졌다. 따라서 본 논문에서는 GTM과 LTM의 장점을 결합하여 전역적인 대비를 보존하는 동시에 영상의 경계 정보를 보존하는 TMO를 제안하였으며 실험결과를 통해 제안하는 톤 매핑 기법이 인지적 화질 측면에서 성능이 우수한 것으로 확인되었다.

Keywords

References

  1. Jeongyun L., Yong-Jo A., Woong L., Seanae P., Donggyu S., and Jung-Won K., "Layered Codeing Method for Scalable Coding of HDR and SDR videos," Journal of Broadcast Engineering, vol. 20, no. 5, pp. 756-769, Sep. 2015. https://doi.org/10.5909/JBE.2015.20.5.756
  2. Jeongyun L., Woong L., and Donggyu S., "Standard technology trend for HDR / WCG image compression," The Korean Society of Broadcast and Media Engineers, vol. 21, no. 1, pp.59-69, 2016.
  3. Tae-Jang P. and In-Kyu P., "HDR Image Acquisition from Two LDR Images," Journal of Broadcast Engineering, vol. 16, no. 2, pp. 247-257, 2011. https://doi.org/10.5909/JEB.2011.16.2.247
  4. K. Devlin, A Review of Tone Reproduction Techniques, Dept. Comput. Sci. Univ. Bristol, Bristol, U.K., Nov. 2002.
  5. Christophe Schlick, "Quantization Techniques for Visualization of High Dynamic Range Pictures," Proceeding of the Fifth Eurographics Workshop on Rendering, pp. 7-18, 2014.
  6. Gregory Ward Larson, Holly Rushmeier, and Christine Piatko, "A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes," IEEE Transactions on Visualization and Computer Graphics., vol. 3, no. 4, pp. 291-306, Dec. 1997. https://doi.org/10.1109/2945.646233
  7. Frederic Drago, Karol Myszkowski, Thomas Annen, and Norishige Chiba, "Adaptive Logarithmic Mapping for Displaying High Contrast Scenes," Computer Graphics Forum., vol. 22, no. 3, pp. 419-426, Sep. 2003. https://doi.org/10.1111/1467-8659.00689
  8. Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda, "Photographic Tone Reproduction for Digital Images," ACM Trans. Graph., vol. 21, no. 3, pp. 267-276, Jul. 2002. https://doi.org/10.1145/566654.566575
  9. Sumanta N. Pattanaik, James A. Ferwerda, Mark D. Fairchild, and Donald P. Greenberg, "A Multiscale Model of Adaptation and Spatial Vision for Realistic Image Display," In SIGGRAPH'98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 287-298. New York, NY, USA: ACM, 1998.
  10. Michael Ashikhmin, "A Tone Mapping Algorithm for High Contrast Images," EGRW'02: Proceedings of the 13th Eurographics Workshop on Rendering, pp. 145-156, Aire-la-Ville, Switzerland: Eurographics Association, 2002.
  11. H. Shahid, D. Li, A. Fanaswala, M. T. Pourazad, and P. Nasiopoulos, "A New Hybrid Tone Mapping Scheme for High Dynamic Range (HDR) Videos," IEEE International Conference on Consumer lectronics (ICCE), pp. 351-352, 2015.
  12. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging, Acquisition, Display, and Image-Based Lighting, Morgan Kaufmann, 2005.
  13. S. Daly, The Visible Differences Predictor: An algorithm for the assessment of image fidelity, Digital Images and Human Vision, vol. 1666, 1992.
  14. O. Blackwell and H. Blackwell, "Visual performance data for 156 normal observers of various ages," Journal of the Illuminating Engineering Society, vol. 1, no. 1, pp. 3-13, 1971. https://doi.org/10.1080/00994480.1971.10732194
  15. K.He, J.Sun, and X.Tang, "Guided Image filtering," IEEE Trans. Pattern Anal. Mach. Learn., vol. 35, no. 6, pp. 1397-1409, Jun. 2013. https://doi.org/10.1109/TPAMI.2012.213
  16. N.Draper and H.Smmith, Applied Regression Analysis, 2nd edition, JohnWiley, 1981.
  17. Wu, J., Shi, G., Lin, W., Liu, A., and Qi, F., "Just noticeable difference estimation for images with free-energy principle," IEEE Trans. Multimed., vol.15, no.7, pp.1705-1710, 2013. https://doi.org/10.1109/TMM.2013.2268053
  18. H. Yeganeh and Z. Wang, "High dynamic range image tone mapping by maximizing a structural fidelity measure," IEEE Int. Conf. Acoust., Speech Signal Process., pp. 1879-1883, May 2013.
  19. M. Cadik and P. Slavik, "The naturalness of reproduced high dynamic range images," In Proc. 9th Int. Conf. Inf. Vis., pp. 920-925, 2005.
  20. K. Ma, H. Yeganeh, K. Zeng, and Z. Wang, "High dynamic range image tone mapping by optimizing tone mapped image quality index," IEEE Int. Conf. Multimedia Expo, pp. 1-6, Jul. 2014.