DOI QR코드

DOI QR Code

[18F]Aryl fluorides from hypervalent iodine compounds

  • Chun, Joong-Hyun (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Son, Jeongmin (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Park, Jun Young (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Yun, Mijin (Department of Nuclear Medicine, Yonsei University College of Medicine)
  • Received : 2017.05.29
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

Nucleophilic aromatic fluorination has been one of the most explored methods in fluorin-18 based radiochemistry. Unlike electrophilic $[^{18}F]$fluorination methods, no-carrier-added nucleophilic radiofluorination with cyclotron-produced $[^{18}F]$fluoride ion offers better specific radioactivity which is essential aspect to obtain good quality images from positron emission tomography. Contrary to amenable aliphatic radiofluorination, the development of reliable aromatic $[^{18}F]$fluorination methods has been pursued by many research groups; however, no viable method has yet been established. Recently, hypervalent iodine compound draws increasing attention as versatile radiolabeling precursor for various $[^{18}F]$fluoroarenes, since it bears the capacity to introduce fluorine-18 either on electron-deficient or electron-rich aryl ring with enhanced regiospecificity. Other classes of hypervalent iodine congeners often utilized in radiochemistry are iodylarenes, iodonium ylides, and spirocyclic iodonium ylides. Recently developed spirocyclic iodonium ylides have already been avidly employed to provide various $[^{18}F]$aryl fluorides with high labeling efficiency. This metal-free protocol would afford efficient routes, replacing the traditional approaches to $[^{18}F]$fluoroarenes, from prosthetic labeling synthons to complex PET radiotracers.

Keywords

References

  1. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev 2008;108:1501-1516 https://doi.org/10.1021/cr0782426
  2. Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of $^{11}C$, $^{18}F$, $^{15}O$, and $^{13}N$ radiolabels for Positron Emission Tomography. Angew Chem Int Ed 2008; 47: 8998-9033 https://doi.org/10.1002/anie.200800222
  3. Cai L, Lu S, Pike VW. Chemistry with [$^{18}F$]fluoride ion. Eur J Org Chem 2008; 2853-2873
  4. Preshlock S, Tredwell M, Gouverneur V. $^{18}F$-Labeling of arenes and heteroarenes for applications in Positron Emission Tomography. Chem Rev 2016;116:719-766 https://doi.org/10.1021/acs.chemrev.5b00493
  5. Tredwell M, Gouverneur V. 18F- Labeling of arenes Angew Chem Int Ed 2012; 51: 11426-11437. https://doi.org/10.1002/anie.201204687
  6. Paans AMJ, Vaalburg W. Positron Emission Tomography in drug development and drug evaluation. Curr Pharm Des 2000; 6: 1538-1591
  7. O'Hagan D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev 2008; 37: 308-319. https://doi.org/10.1039/B711844A
  8. Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev 2008; 37: 320-330 https://doi.org/10.1039/B610213C
  9. Coenen HH. Fluorine-18 labelling methods: features and possibilities of basic rections in PET chemistry, The driving force in molecular imaging. Schubiger L, Lehmann L, Friebe M, Eds. Berlin Heidelberg: Springer-Verlag; 2007. p.15-50.
  10. Bishop A, Satyamurthy N, Bida G, Phelps M, Barrio JR. Identification and quantification of gaseous compounds of fluorine generated in $[^{18}F]F_2$ target systems. Nucl Med Biol 1996; 23: 391-405 https://doi.org/10.1016/0969-8051(95)02043-8
  11. Bergman J, Solin O. Fluorine-18 labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 1997; 24: 677-683 https://doi.org/10.1016/S0969-8051(97)00078-4
  12. Chirakal R, Finau G, Schrobilgen GJ, Mckay J, Garnett ES The synthesis of [$^{18}F$]xenon difluoride from [$^{18}F$]fluorine gas. Int J Appl Radit Isot 1984; 35: 401-404. https://doi.org/10.1016/0020-708X(84)90049-8
  13. Kim DW, Ahn D-S, Oh Y-H, Lee S, Kil HS, Oh SJ, Lee SJ, Kim JS, Ryu JS, Moon DH, Chi DY. A new class of $S_N2$ reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules J Am Chem Soc 2006; 128: 16394-16397. https://doi.org/10.1021/ja0646895
  14. Lee S-S, Kim H-S, Hwang T-K, Oh Y-H, Park S-W, Lee S, Lee BS, Chi DY. Efficiency of bulky protic solvent for $S_N2$ reaction Org Lett 2008; 10: 61-64. https://doi.org/10.1021/ol702627m
  15. Pike VW, Aigbirhio FI. Reaction of cyclotron-produced [$^{18}F$]fluoride with diaryliodonium salts-A novel singlestep route to no-carrier-added [$^{18}F$]fluoroarenes J Chem Soc Chem Commun 1995: 2215-2216.
  16. Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging Science 2011; 334: 639-642 https://doi.org/10.1126/science.1212625
  17. Lee E, Hooker JM, Ritter T. Nickel-mediated oxidative fluorination for PET with aqueous [$^{18}F$]fluoride J Am Chem Soc 2012; 134: 17456-17458. https://doi.org/10.1021/ja3084797
  18. Stang PJ, Zhdankin VV. Organic polyvalent iodine compounds. Chem Rev 1996; 96: 1123-1178 https://doi.org/10.1021/cr940424+
  19. Zhdankin VV, Stang PJ. Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev 2002; 102: 2523-2584 https://doi.org/10.1021/cr010003+
  20. Zhdankin VV, Stang PJ. Chemistry of polyvalent iodine. Chem Rev 2008; 108: 5299-5358 https://doi.org/10.1021/cr800332c
  21. Yoshimura A, Zhdankin VV. Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 2016; 116: 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547
  22. Pages T, Langlois BR. Fluorination of aromatic compounds from 1-aryl-3,3-dimethyltriazenes and fluoride anions in acidic medium: 1. A model for $^{18}F$ labelling. J Fluorine Chem 2001; 107: 321-327 https://doi.org/10.1016/S0022-1139(00)00376-6
  23. Pages T, Langlois BR, Le Bars D, Landais P. Fluorination of aromatic compounds from 1-aryl-3,3-dimethyltriazenes and fluoride anions in acidic medium: 2. A Synthesis of (S)- [$^{18}F$]-3-fluoro-${\alpha}$-methylphenylalanine. J Fluorine Chem 2001; 107: 329-335. https://doi.org/10.1016/S0022-1139(00)00377-8
  24. van der Puy M. Conversion of diaryliodonium salts to aryl fluoride. J Fluorine Chem 1982; 21: 385-392. https://doi.org/10.1016/S0022-1139(00)81524-9
  25. Yasubov MS, Maskaev AV, Zhdankin VV. Iodonium salts in organic synthesis. ARKIVOC 2011; i: 370-409
  26. Kovac M, Mavel S, Anderluh M. $^{18}F$-Labeled aryltracers through direct introduction of [$^{18}F$]fluoride into electron-rich arenes. Curr Org Chem 2013; 17: 2921-2935. https://doi.org/10.2174/13852728113179990022
  27. Satyamurthy N, Barrio JR. 2010; WO 2010008522 A2.
  28. Satyamurthy N, Barrio JR. 2010; WO 2010117435 A2.
  29. Hossain MD, Kitamura T, Reaction of iodoarenes with potassium peroxodisulfate/trifluoroacetic acid in the presence of aromatics. Direct preparation of diaryliodonium triflates from iodoarenes. Tetrahedron 2006; 62: 6955-6960 https://doi.org/10.1016/j.tet.2006.04.073
  30. Bielawski M, Olofsson B. Highyielding one-pot synthesis of diaryliodonium triflates from arenes and iodine or aryl iodides. Chem Commun 2007: 2521-2523
  31. Dohi T, Yamaoka N, Kita Y. Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonum (III) salts. Tetrahedron 2010; 66: 5775-5785. https://doi.org/10.1016/j.tet.2010.04.116
  32. Carroll MA, Pike VW, Widdowson DA. New synthesis of diaryliodonium sulfonates from arylboronic acids. Tetrahedron Lett 2000; 41: 5393-5396. https://doi.org/10.1016/S0040-4039(00)00861-3
  33. Chun J-H, Pike VW. Regiospecific syntheses of functionalized diaryliodonium tosylates via [hydroxy(tosyloxy)iodo]arenes generated in situ from (diacetoxyiodo)arenes. J Org Chem 2012; 77: 1931-1938. https://doi.org/10.1021/jo202517v
  34. Shah A, Pike VW, Widdowson DA. The syntheses of [$^{18}F$]fluoroarenes from the reaction of cyclotron-produced [$^{18}F$]fluoride ion with diaryliodonium salts. J Chem Soc, Perkin Trans 1 1998: 2043-2046
  35. Yamada Y, Okawara M. Steric effect in the nucleophilic attack of bromide anion on diaryl- and aryl-2-thienyliodonium ions. Bull Chem Soc Jpn 1972; 45: 1860-1863 https://doi.org/10.1246/bcsj.45.1860
  36. Grushin VV, Demkina II, Tolstaya TP. Unified mechanistic analysis of polar reactions of diaryliodonium salts. J Chem Soc, Perkin Trans 2 1992: 505-511
  37. Chun J-H, Lu S, Lee Y-S, Pike VW. Fast and high-yield microreactor syntheses of ortho-substituted [$^{18}F$]fluoroarenes from reactions of [$^{18}F$]fluoride ion with diaryliodonium salts. J Org Chem 2010; 75: 3332-3338 https://doi.org/10.1021/jo100361d
  38. Chun J-H, Lu S, Pike VW. Raid and efficient radiosyntheses of meta-substituted [$^{18}F$] fluoroarenes from [$^{18}F$]fluoride ion and diaryliodonium tosylates within a microreactor. Eur J Org Chem 2011: 4439-4447.
  39. Ross TL, Ermert J, Hocke C, Coenen HH. Nucleophilic $^{18}F$-fluorination of heteroaromatic iodonium salts with nocarrier- added [$^{18}F$]fluoride. J Am Chem Soc 2007; 129: 8018-8025. https://doi.org/10.1021/ja066850h
  40. Carroll MA, Jones C, Tang S-L. Fluoridation of 2-thienyliodonium salts. J Labelled Compd Radiopharm 2007; 50: 450-451. https://doi.org/10.1002/jlcr.1189
  41. Carroll MA, Nairne J, Smith G, Widdowson DA. Radical scavengers: A practical solution to the reproducibility issue in the fluoridation of diaryliodonium salts. J Fluorine Chem 2007; 128: 127-132. https://doi.org/10.1016/j.jfluchem.2006.10.018
  42. Wang B, Graskemper JW, Qin L, DiMagno SG. Regiospecific reductive elimination from diaryliodonium salts. Angew Chem Int Ed 2010; 49: 4079-4083. https://doi.org/10.1002/anie.201000695
  43. Chun J-H, Pike VW. Single-step syntheses of no-carrieradded functionalized [$^{18}F$]fluoroarenes as labeling synthons from diaryliodonium salts. Org Biomol Chem 2013; 11: 127-132.
  44. Kugler F, Ermert J, Kaufholz P, Coenen HH. 4-[$^{18}F$] Fluorophenylpiperazines by improved Hartwig-Buchwald N-arylation of 4-[$^{18}F$]fluoroiodobenznene, formed via hypervalent ${\lambda}3$-iodane precursors: application to buildup of the dopamine D4 ligand [$^{18}F$]FAUC 316. Molecules 2015; 20: 470-486.
  45. Ross TL, Ermert J, Coenen HH. Synthesis of no-carrieradded 4-[$^{18}F$]fluorophenol from 4-benzyloxyphenyl-(2- thienyl)iodonium bromide. Molecules 2011; 16: 7621-7626. https://doi.org/10.3390/molecules16097621
  46. Thonon D, Kech C, Paris J, Lemaire C, Luxen A. New strategy for the preparation of clickable peptides and labeling with 1-(azidomethyl)-4-[$^{18}F$]-fluorobenzene for PET. Bioconjugate Chem 2009; 20: 817-823. https://doi.org/10.1021/bc800544p
  47. Chun J-H, Pike VW. Single-step radiosynthesis of "$^{18}F$-labeled click synthons" from azide-functionalized diaryliodonium salts. Eur J Org Chem 2012: 4541-4547.
  48. Ichiishi N, Brooks AF, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJH. Copper-catalyzed [$^{18}F$]fluorination of (mesityl)(aryl)iodonium salts. Org Lett 2014; 16: 3224-3227. https://doi.org/10.1021/ol501243g
  49. Hwang D-R, Dence CS, McKinnon ZA, Mathias CJ, Welch MJ, Positron labeled muscarinic acetylcholine receptor antagonist: 2- and 4-[$^{18}F$]fluorodexetimide. Syntheses and biodistribution. Nucl Med Biol 1991; 18: 247-252
  50. Lemaire C, Damhaut P, Plenevaux A, Cantineau R, Christiaens L, Guillaume M, Synthesis of fluorine-18 substituted aromatic aldehyde and benzyl bromide, new intermediates for n.c.a. [$^{18}F$]fluorination. Appl Radiat Isot 1992; 43: 485-494. https://doi.org/10.1016/0883-2889(92)90130-7
  51. Basuli F, Wu H, Li C, Shi Z-D, Sulima A, Griffiths GL. A first synthesis of $^{18}F$-radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity. J Labelled Compd Radiopharm 2011; 54: 633-636. https://doi.org/10.1002/jlcr.1898
  52. Lee BC, Lee KC, Lee H, Mach RH, Katzenellenbogen JA. Strategies for the labeling of halogen-substituted peroxisome proliferator-activated receptor ${\gamma}$ ligands: potential positron emission tomography and single photon emission computed tomography imaging agents. Bioconjugate Chem 2007; 18: 514-523. https://doi.org/10.1021/bc060191g
  53. Zhang M-R, Kumata K, Suzuki K. A practical route for synthesizing a PET ligand containing [$^{18}F$]fluorobenzene using reaction of diphenyliodonium salt with [$^{18}F$]F-. Tetrahedron Lett 2007; 48: 8632-8635. https://doi.org/10.1016/j.tetlet.2007.10.025
  54. Yasubov MS, Svitich DY, Larkina MS, Zhdankin VV. Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in Positron Emission Tomography. ARKIVOC 2013; i: 179-190.
  55. Moon BS, Kil HS, Park JH, Kim JS, Park J, Chi DY, Lee BC. Facile aromatic radiofluorination of [$^{18}F$]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org Biomol Chem 2011; 9: 8346-8355. https://doi.org/10.1039/c1ob06277h
  56. Telu S, Chun J-H, Simeon FG, Lu S, Pike VW. Synthesis of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org Biomol Chem 2011; 9: 6629-6638. https://doi.org/10.1039/c1ob05555k
  57. Selivanova SV, Stellfeld T, Heinrich TK, Müller A, Krämer SD, Schubiger PA, Schibli R, Ametamey SM, Vos B, Meding J, Bauser M, Hutter J, Dinkelborg LM. Design, synthesis, and initial evaluation of a high affinity positron emission tomography probe for imaging matrix metalloproteinases 2 and 9. J Med Chem 2013; 56: 4912-4920. https://doi.org/10.1021/jm400156p
  58. Xu R, Zanotti-Fregonara Z, Zoghbi SS, Gladding RL, Woock AE, Innis RB, Pike VW. Synthesis and evaluation in monkey of [$^{18}F$]4-fluoro-N-methyl-N-(4- (6-(methylamino)pyridimin-4-yl)thiazol-2-yl)benzamide ([$^{18}F$]FIMX): a promising radioligand for PET imaging og brain metabotropic glutamate receptor 1 (mGluR1). J Med Chem 2013; 56: 9146-9155. https://doi.org/10.1021/jm4012017
  59. Warnier C, Lemaire C, Becker G, Zaragoza G, Giacomelli F, Aerts J, Otabashi M, Bahri MA, Mercier J, Plenevaux A, Luxen A. Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one-step radiosynthesis of a highly potent $^{18}F$-labeled ligand ([$^{18}F$]UCB-H). J Med Chem 2016; 59: 8955-8966. https://doi.org/10.1021/acs.jmedchem.6b00905
  60. Edwards R, Wirth T. [$^{18}F$]6-Fluoro-3,4-dihydroxy-Lphenylalanine- recent modern syntheses for an elusive radiotracer. J Labelled Compd Radiopharm 2015; 58: 183-187. https://doi.org/10.1002/jlcr.3285
  61. Forsback S, Eskola O, Bergmann J, Haaparanta M, Solin O. Alternative solvents for electrophilic synthesis of 6-[$^{18}F$]fluoro-L-DOPA. J Labelled Compd Radiopharm 2009; 52: 286-288. https://doi.org/10.1002/jlcr.1599
  62. Neumann KD, Qin L, Vávere AL, Shen B, Miao Z, Chin FT, Shulkin BL, Snyder SE, DiMagno SG. Efficient automated syntheses of high specific activity 6-[$^{18}F$] fluorodopamine using a diaryliodonium salt precursor. J Labelled Compd Radiopharm 2016; 59: 30-34. https://doi.org/10.1002/jlcr.3367
  63. Cardinale J, Ermert J, Humpert S, Coenen HH. Iodonium ylides for one-step, no-carrier-added radiofluorination of elctron rich arenes, exemplified with 4-(([$^{18}F$] fluorophenoxy)-phenylmethyl)piperidine NET and SERT ligands. RSC Adv 2014; 4: 17293-17299. https://doi.org/10.1039/C4RA00674G
  64. Rotstein BH, Stephenson NA, Vasdev N, Liang SH. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of nonactivated and hindered aromatics. Nat Commun 2014; 5, 4365. https://doi.org/10.1038/ncomms5365
  65. Stephenson NA, Holland JP, Kassenbrock A, Yokell DL, Livni E, Liang SH, Vasdev N. Iodonium ylide-mediated radiofluorination of $^{18}F$-FPEB and validation for human use. J Nucl Med 2015; 56: 489-492. https://doi.org/10.2967/jnumed.114.151332
  66. Wang L, Jacobson O, Avdic D, Rotstein BH, Weiss ID, Collier, Chen X, Vasdev N, Liang SH. Ortho-stabilized $^{18}F$-azido click agents and their application in PET imaging with single-stranded DNA Aptamers. Angew Chem Int Ed 2015; 54: 12777-12781. https://doi.org/10.1002/anie.201505927