DOI QR코드

DOI QR Code

Structure, signaling and the drug discovery of the Ras oncogene protein

  • Han, Chang Woo (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Mi Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 2017.04.13
  • Accepted : 2017.05.28
  • Published : 2017.07.31

Abstract

Mutations in Ras GTPase are among the most common genetic alterations in human cancers. Despite extensive research investigating Ras proteins, their functions still remain a challenge over a long period of time. The currently available data suggests that solving the outstanding issues regarding Ras could lead to development of effective drugs that could have a significant impact on cancer treatment. Developing a better understanding of their biochemical properties or modes of action, along with improvements in their pharmacologic profiles, clinical design and scheduling will enable the development of more effective therapies.

Keywords

References

  1. Cox AD and Der CJ (2010) Ras history: The saga continues. Small GTPases 1, 2-27 https://doi.org/10.4161/sgtp.1.1.12178
  2. Victor T, Du Toit R, Jordaan AM, Bester AJ and Van Helden PD (1990) No evidence for point mutations in codons 12, 13, and 61 of the ras gene in a high-incidence area for esophageal and gastric cancers. Cancer Res 50, 4911-4914
  3. Chang YS, Yeh KT, Hsu NC et al (2010) Detection of N-, H-, and KRAS codons 12, 13, and 61 mutations with universal RAS primer multiplex PCR and N-, H-, and KRAS-specific primer extension. Clin Biochem 43, 296-301 https://doi.org/10.1016/j.clinbiochem.2009.10.007
  4. Berns A (2008) Kras and Hras-what is the difference? Nat Genet 40, 1149-1150 https://doi.org/10.1038/ng1008-1149
  5. Eungdamrong NJ and Iyengar R (2004) Computational approaches for modeling regulatory cellular networks. Trends Cell Biol 14, 661-669 https://doi.org/10.1016/j.tcb.2004.10.007
  6. Brock EJ, Ji K, Reiners JJ and Mattingly RR (2016) How to target activated Ras proteins: direct inhibition vs. induced mislocalization. Mini Rev Med Chem 16, 358-369 https://doi.org/10.2174/1389557515666151001154002
  7. Milburn MV, Tong L, Brunger A and Yamaizumi Z (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939-945 https://doi.org/10.1126/science.2406906
  8. De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16, 17-27
  9. Bos JL (1997) Ras-like GTPases. Biochim Biophys Acta 1333, 19-31
  10. Touchot N, Chardin P and Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci U S A 84, 8210-8214 https://doi.org/10.1073/pnas.84.23.8210
  11. Wittinghofer A and Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80, 943-971 https://doi.org/10.1146/annurev-biochem-062708-134043
  12. Ostrem JM, Peters U, Sos ML, Wells JA and Shokat KM (2013) K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548-551 https://doi.org/10.1038/nature12796
  13. Prior IA, Lewis PD and Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72, 2457-2467 https://doi.org/10.1158/0008-5472.CAN-11-2612
  14. Reiss Y, Goldstein JL, Seabra MC, Casey PJ and Brown MS (1990) Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell 62, 81-88 https://doi.org/10.1016/0092-8674(90)90242-7
  15. Michaelson D, Ali W, Chiu VK et al (2005) Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol Biol Cell 16, 1606-1616 https://doi.org/10.1091/mbc.E04-11-0960
  16. Manolaridis I, Kulkarni K, Dodd RB et al (2013) Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301-305 https://doi.org/10.1038/nature12754
  17. Hancock JF and Robert G (2005) Ras plasma membrane signalling platforms. Biochem J 389, 1-11 https://doi.org/10.1042/BJ20050231
  18. Smith MJ and Ikura M (2014) Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Nat Chem Biol 10, 223-230 https://doi.org/10.1038/nchembio.1435
  19. Scheffzek K, Ahmadian MR, Kabsch W et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-339 https://doi.org/10.1126/science.277.5324.333
  20. Feig LA (1999) Tools of the trade: use of dominantinhibitory mutants of Ras-family GTPases. Nat Cell Biol 1, 25-27 https://doi.org/10.1038/10018
  21. Roberts PJ and Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310 https://doi.org/10.1038/sj.onc.1210422
  22. Leicht DT, Balan V, Kaplun A et al (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773, 1196-1212 https://doi.org/10.1016/j.bbamcr.2007.05.001
  23. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3, 11-22 https://doi.org/10.1038/nrc969
  24. Manna PR and Stocco DM (2011) The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J Signal Transduct 2011, 821615
  25. Zhang W and Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12, 9-18 https://doi.org/10.1038/sj.cr.7290105
  26. Wong KK, Engelman JA and Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20, 87-90 https://doi.org/10.1016/j.gde.2009.11.002
  27. Eser S, Reiff N, Messer M et al (2013) Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406-420 https://doi.org/10.1016/j.ccr.2013.01.023
  28. Pearce LR, Komander D and Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11, 9-22
  29. Sadeghi N and Gerber DE (2012) Targeting the PI3K pathway for cancer therapy. Future Med Chem 4, 1153-1169 https://doi.org/10.4155/fmc.12.56
  30. Welch HC, Coadwell WJ, Stephens LR and Hawkins PT (2003) Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546, 93-97 https://doi.org/10.1016/S0014-5793(03)00454-X
  31. Hao Y, Wong R and Feig LA (2008) RalGDS couples growth factor signaling to Akt activation. Mol Cell Biol 28, 2851-2859 https://doi.org/10.1128/MCB.01917-07
  32. Kashatus DF (2013) Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res 319, 2337-2342 https://doi.org/10.1016/j.yexcr.2013.06.020
  33. Bunney TD and Katan M (2006) Phospholipase C epsilon: linking second messengers and small GTPases. Trends Cell Biol 16, 640-648 https://doi.org/10.1016/j.tcb.2006.10.007
  34. Urtreger AJ, Kazanietz MG and Bal de Kier Joffe ED (2012) Contribution of individual PKC isoforms to breast cancer progression. IUBMB Life 64, 18-26 https://doi.org/10.1002/iub.574
  35. Leshchiner ES, Parkhitko A, Bird GH et al (2015) Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc Natl Acad Sci U S A 112, 1761-1766 https://doi.org/10.1073/pnas.1413185112
  36. Aviel-Ronen S, Blackhall FH, Shepherd FA and Tsao MS (2006) K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer 8, 30-38 https://doi.org/10.3816/CLC.2006.n.030
  37. Chang YS, Yeh KT, Hsu NC et al (2010) Detection of N-, H-, and KRAS codons 12, 13, and 61 mutations with universal RAS primer multiplex PCR and N-, H-, and KRAS-specific primer extension. Clin Biochem 43, 296-301 https://doi.org/10.1016/j.clinbiochem.2009.10.007
  38. Repasky GA, Chenette EJ and Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14, 639-647 https://doi.org/10.1016/j.tcb.2004.09.014
  39. Westcott PM and To MD (2013) The genetics and biology of KRAS in lung cancer. Chin J Cancer 32, 63-70 https://doi.org/10.5732/cjc.012.10098
  40. Cox AD, Fesik SW, Kimmelman AC, Luo J and Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13, 828-851 https://doi.org/10.1038/nrd4389
  41. Papke B and Der CJ (2017) Drugging RAS: Know the enemy. Science 355, 1158-1163 https://doi.org/10.1126/science.aam7622
  42. Hunter JC, Gurbani D, Ficarro SB et al (2014) In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci U S A 111, 8895-8900 https://doi.org/10.1073/pnas.1404639111
  43. Boch C, Kollmeier J, Roth A et al (2013). The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study. BMJ Open 3, e002560 https://doi.org/10.1136/bmjopen-2013-002560
  44. Lim SM, Westover KD, Ficarro SB et al (2014) Therapeutic Targeting of Oncogenic K-Ras by a Covalent Catalytic Site Inhibitor. Angew Chem Int Ed Engl 53, 199-204 https://doi.org/10.1002/anie.201307387
  45. Bos JL, Rehmann H and Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877 https://doi.org/10.1016/j.cell.2007.05.018
  46. Winter JJ, Anderson M, Blades K et al (2015) Small molecule binding sites on the Ras: SOS complex can be exploited for inhibition of Ras activation. J Med Chem 58, 2265-2274 https://doi.org/10.1021/jm501660t
  47. Maurer T, Garrenton LS, Oh A et al (2012) Smallmolecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci U S A 109, 5299-5304 https://doi.org/10.1073/pnas.1116510109
  48. Patgiri A, Yadav KK, Arora PS and Bar-Sagi D (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7, 585-587 https://doi.org/10.1038/nchembio.612
  49. Capell BC, Erdos MR, Madigan JP et al (2005) Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 102, 12879-12884 https://doi.org/10.1073/pnas.0506001102
  50. Baker NM and Der CJ (2013) Cancer: Drug for an 'undruggable' protein. Nature 497, 577-578 https://doi.org/10.1038/nature12248
  51. Steelman LS, Chappell WH, Abrams SL et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3, 192-222
  52. Cervello M, Bachvarov D, Lampiasi N et al (2012) Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 11, 2843-2855 https://doi.org/10.4161/cc.21193
  53. Samant RS and Shevde LA (2011) Recent advances in anti-angiogenic therapy of cancer. Oncotarget 2, 122-134 https://doi.org/10.18632/oncotarget.234
  54. Aronov AM, Tang Q, Martinez-Botella G et al (2009) Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J Med Chem 52, 6362-6368 https://doi.org/10.1021/jm900630q
  55. Do K, Speranza G, Bishop R et al (2015) Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs 33, 720-728 https://doi.org/10.1007/s10637-015-0212-z
  56. Najumudeen AK, Jaiswal A, Lectez B et al (2016) Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene 35, 5248-5262 https://doi.org/10.1038/onc.2016.59
  57. Ledford H (2015) Cancer: The ras renaissance. Nature 520, 278-280 https://doi.org/10.1038/520278a