References
- Cox AD and Der CJ (2010) Ras history: The saga continues. Small GTPases 1, 2-27 https://doi.org/10.4161/sgtp.1.1.12178
- Victor T, Du Toit R, Jordaan AM, Bester AJ and Van Helden PD (1990) No evidence for point mutations in codons 12, 13, and 61 of the ras gene in a high-incidence area for esophageal and gastric cancers. Cancer Res 50, 4911-4914
- Chang YS, Yeh KT, Hsu NC et al (2010) Detection of N-, H-, and KRAS codons 12, 13, and 61 mutations with universal RAS primer multiplex PCR and N-, H-, and KRAS-specific primer extension. Clin Biochem 43, 296-301 https://doi.org/10.1016/j.clinbiochem.2009.10.007
- Berns A (2008) Kras and Hras-what is the difference? Nat Genet 40, 1149-1150 https://doi.org/10.1038/ng1008-1149
- Eungdamrong NJ and Iyengar R (2004) Computational approaches for modeling regulatory cellular networks. Trends Cell Biol 14, 661-669 https://doi.org/10.1016/j.tcb.2004.10.007
- Brock EJ, Ji K, Reiners JJ and Mattingly RR (2016) How to target activated Ras proteins: direct inhibition vs. induced mislocalization. Mini Rev Med Chem 16, 358-369 https://doi.org/10.2174/1389557515666151001154002
- Milburn MV, Tong L, Brunger A and Yamaizumi Z (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939-945 https://doi.org/10.1126/science.2406906
- De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16, 17-27
- Bos JL (1997) Ras-like GTPases. Biochim Biophys Acta 1333, 19-31
- Touchot N, Chardin P and Tavitian A (1987) Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci U S A 84, 8210-8214 https://doi.org/10.1073/pnas.84.23.8210
- Wittinghofer A and Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80, 943-971 https://doi.org/10.1146/annurev-biochem-062708-134043
- Ostrem JM, Peters U, Sos ML, Wells JA and Shokat KM (2013) K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548-551 https://doi.org/10.1038/nature12796
- Prior IA, Lewis PD and Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72, 2457-2467 https://doi.org/10.1158/0008-5472.CAN-11-2612
- Reiss Y, Goldstein JL, Seabra MC, Casey PJ and Brown MS (1990) Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides. Cell 62, 81-88 https://doi.org/10.1016/0092-8674(90)90242-7
- Michaelson D, Ali W, Chiu VK et al (2005) Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol Biol Cell 16, 1606-1616 https://doi.org/10.1091/mbc.E04-11-0960
- Manolaridis I, Kulkarni K, Dodd RB et al (2013) Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301-305 https://doi.org/10.1038/nature12754
- Hancock JF and Robert G (2005) Ras plasma membrane signalling platforms. Biochem J 389, 1-11 https://doi.org/10.1042/BJ20050231
- Smith MJ and Ikura M (2014) Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Nat Chem Biol 10, 223-230 https://doi.org/10.1038/nchembio.1435
- Scheffzek K, Ahmadian MR, Kabsch W et al (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-339 https://doi.org/10.1126/science.277.5324.333
- Feig LA (1999) Tools of the trade: use of dominantinhibitory mutants of Ras-family GTPases. Nat Cell Biol 1, 25-27 https://doi.org/10.1038/10018
- Roberts PJ and Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310 https://doi.org/10.1038/sj.onc.1210422
- Leicht DT, Balan V, Kaplun A et al (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773, 1196-1212 https://doi.org/10.1016/j.bbamcr.2007.05.001
- Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3, 11-22 https://doi.org/10.1038/nrc969
- Manna PR and Stocco DM (2011) The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J Signal Transduct 2011, 821615
- Zhang W and Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12, 9-18 https://doi.org/10.1038/sj.cr.7290105
- Wong KK, Engelman JA and Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20, 87-90 https://doi.org/10.1016/j.gde.2009.11.002
- Eser S, Reiff N, Messer M et al (2013) Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406-420 https://doi.org/10.1016/j.ccr.2013.01.023
- Pearce LR, Komander D and Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11, 9-22
- Sadeghi N and Gerber DE (2012) Targeting the PI3K pathway for cancer therapy. Future Med Chem 4, 1153-1169 https://doi.org/10.4155/fmc.12.56
- Welch HC, Coadwell WJ, Stephens LR and Hawkins PT (2003) Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546, 93-97 https://doi.org/10.1016/S0014-5793(03)00454-X
- Hao Y, Wong R and Feig LA (2008) RalGDS couples growth factor signaling to Akt activation. Mol Cell Biol 28, 2851-2859 https://doi.org/10.1128/MCB.01917-07
- Kashatus DF (2013) Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res 319, 2337-2342 https://doi.org/10.1016/j.yexcr.2013.06.020
- Bunney TD and Katan M (2006) Phospholipase C epsilon: linking second messengers and small GTPases. Trends Cell Biol 16, 640-648 https://doi.org/10.1016/j.tcb.2006.10.007
- Urtreger AJ, Kazanietz MG and Bal de Kier Joffe ED (2012) Contribution of individual PKC isoforms to breast cancer progression. IUBMB Life 64, 18-26 https://doi.org/10.1002/iub.574
- Leshchiner ES, Parkhitko A, Bird GH et al (2015) Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc Natl Acad Sci U S A 112, 1761-1766 https://doi.org/10.1073/pnas.1413185112
- Aviel-Ronen S, Blackhall FH, Shepherd FA and Tsao MS (2006) K-ras mutations in non-small-cell lung carcinoma: a review. Clin Lung Cancer 8, 30-38 https://doi.org/10.3816/CLC.2006.n.030
- Chang YS, Yeh KT, Hsu NC et al (2010) Detection of N-, H-, and KRAS codons 12, 13, and 61 mutations with universal RAS primer multiplex PCR and N-, H-, and KRAS-specific primer extension. Clin Biochem 43, 296-301 https://doi.org/10.1016/j.clinbiochem.2009.10.007
- Repasky GA, Chenette EJ and Der CJ (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14, 639-647 https://doi.org/10.1016/j.tcb.2004.09.014
- Westcott PM and To MD (2013) The genetics and biology of KRAS in lung cancer. Chin J Cancer 32, 63-70 https://doi.org/10.5732/cjc.012.10098
- Cox AD, Fesik SW, Kimmelman AC, Luo J and Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13, 828-851 https://doi.org/10.1038/nrd4389
- Papke B and Der CJ (2017) Drugging RAS: Know the enemy. Science 355, 1158-1163 https://doi.org/10.1126/science.aam7622
- Hunter JC, Gurbani D, Ficarro SB et al (2014) In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci U S A 111, 8895-8900 https://doi.org/10.1073/pnas.1404639111
- Boch C, Kollmeier J, Roth A et al (2013). The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study. BMJ Open 3, e002560 https://doi.org/10.1136/bmjopen-2013-002560
- Lim SM, Westover KD, Ficarro SB et al (2014) Therapeutic Targeting of Oncogenic K-Ras by a Covalent Catalytic Site Inhibitor. Angew Chem Int Ed Engl 53, 199-204 https://doi.org/10.1002/anie.201307387
- Bos JL, Rehmann H and Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877 https://doi.org/10.1016/j.cell.2007.05.018
- Winter JJ, Anderson M, Blades K et al (2015) Small molecule binding sites on the Ras: SOS complex can be exploited for inhibition of Ras activation. J Med Chem 58, 2265-2274 https://doi.org/10.1021/jm501660t
- Maurer T, Garrenton LS, Oh A et al (2012) Smallmolecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci U S A 109, 5299-5304 https://doi.org/10.1073/pnas.1116510109
- Patgiri A, Yadav KK, Arora PS and Bar-Sagi D (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7, 585-587 https://doi.org/10.1038/nchembio.612
- Capell BC, Erdos MR, Madigan JP et al (2005) Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 102, 12879-12884 https://doi.org/10.1073/pnas.0506001102
- Baker NM and Der CJ (2013) Cancer: Drug for an 'undruggable' protein. Nature 497, 577-578 https://doi.org/10.1038/nature12248
- Steelman LS, Chappell WH, Abrams SL et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3, 192-222
- Cervello M, Bachvarov D, Lampiasi N et al (2012) Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 11, 2843-2855 https://doi.org/10.4161/cc.21193
- Samant RS and Shevde LA (2011) Recent advances in anti-angiogenic therapy of cancer. Oncotarget 2, 122-134 https://doi.org/10.18632/oncotarget.234
- Aronov AM, Tang Q, Martinez-Botella G et al (2009) Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J Med Chem 52, 6362-6368 https://doi.org/10.1021/jm900630q
- Do K, Speranza G, Bishop R et al (2015) Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Invest New Drugs 33, 720-728 https://doi.org/10.1007/s10637-015-0212-z
- Najumudeen AK, Jaiswal A, Lectez B et al (2016) Cancer stem cell drugs target K-ras signaling in a stemness context. Oncogene 35, 5248-5262 https://doi.org/10.1038/onc.2016.59
- Ledford H (2015) Cancer: The ras renaissance. Nature 520, 278-280 https://doi.org/10.1038/520278a