References
- Zin N, Loi C, Sarmin N, Rosli A. 2010. Cultivationdependent characterization of endophytic actinomycetes. Res. J. Microbiol. 5: 717-724. https://doi.org/10.3923/jm.2010.717.724
- Junaidah AS, Suhaini S, Sidek HM, Basri DF, Zin NM. 2015. Anti-methicillin resistant Staphylococcus aureus activity and optimal culture condition of Streptomyces sp. SUK 25. Jundishapur J. Microbiol. 8: 1-7.
- Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM. 2016. Isolation and characterization of cyclo-(tryptophanylprolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. Drug Des. Devel. Ther. 10: 1817-1827.
- Fenical W. 1993. Chemical studies of marine bacteria: developing a new resource. Chem. Rev. 93: 1673-1683. https://doi.org/10.1021/cr00021a001
- Stierle A, Cardellina Ii J, Singleton F. 1988. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44: 1021-1021. https://doi.org/10.1007/BF01939910
- Bugni TS, Ireland CM. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 21: 143-163. https://doi.org/10.1039/b301926h
- Huang R, Zhou X, Xu T, Yang X, Liu Y. 2010. Diketopiperazines from marine organisms. Chem. Biodivers. 7: 2809-2829. https://doi.org/10.1002/cbdv.200900211
- Gerets H, Tilmant K, Gerin B, Chanteux H, Depelchin B, Dhalluin S, et al. 2012. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 28: 69-87. https://doi.org/10.1007/s10565-011-9208-4
- Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. 2007. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168: 66-73. https://doi.org/10.1016/j.cbi.2006.12.003
- Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, et al. 2006. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34: 75-83.
- Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. 2002. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99: 15655-15660. https://doi.org/10.1073/pnas.232137699
- Dobretsov SV, Qian P-Y. 2002. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18: 217-228. https://doi.org/10.1080/08927010290013026
- Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- MacIntyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C, et al. 2014. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar. Drugs 12: 3416-3448. https://doi.org/10.3390/md12063416
- Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, et al. 2014. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar. Drugs 12: 1220-1244. https://doi.org/10.3390/md12031220
- Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian PY. 2006. Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22: 201-208.
- Stark T, Hofmann T. 2005. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53: 7222-7231. https://doi.org/10.1021/jf051313m
- Adamczeski M, Reed AR, Crews P. 1995. New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa. J. Nat. Prod. 58: 201-208. https://doi.org/10.1021/np50116a007
- Rahman H. 2008. Unusual sesquiterpenes: gorgonenes and further bioactive secondary metabolites derived from marine and terrestrial bacteria. PhD Thesis. Gottingen University, Germany.
- Gebhardt K, Pukall R, Fiedler H-P. 2001. Streptocidins AD, novel cyclic decapeptide antibiotics produced by Streptomyces sp. Tu 6071. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo) 54: 428-433. https://doi.org/10.7164/antibiotics.54.428
- Smelcerovic AA, Schiebel M, Dordevic SM. 2002. The isolation of (6S, 9S)-cyclo (prolylvalyl) from marine actinomycete, by use of high speed contercurrent chromatography. J. Serbian Chem. Soc. 67: 27-30. https://doi.org/10.2298/JSC0201027S
- Rhee K-H. 2002. Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J. Gen. Appl. Microbiol. 48: 321-327. https://doi.org/10.2323/jgam.48.321
- Jiang Z, Boyd KG, Mearns-Spragg A, Adams DR, Wright PC, Burgess JG. 2000. Two diketopiperazines and one halogenated phenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Nat. Prod. Lett. 14: 435-440. https://doi.org/10.1080/10575630008043781
- Rhee K-H. 2004. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int. J. Antimicrob. Agents 24: 423-427. https://doi.org/10.1016/j.ijantimicag.2004.05.005
- Furtado NA, Pupo MT, Carvalho I, Campo VL, Duarte MCT, Bastos JK. 2005. Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. J. Braz. Chem. Soc. 16: 1448-1453. https://doi.org/10.1590/S0103-50532005000800026
- de Carvalho MP, Abraham W-R. 2012. Antimicrobial and biofilm inhibiting diketopiperazines. Curr. Med. Chem. 19: 3564-3577. https://doi.org/10.2174/092986712801323243
- Huang R, Yan T, Peng Y, Zhou X, Yang X, Liu Y. 2014. Diketopiperazines from the marine sponge Axinella sp. Chem. Nat. Compd. 50: 191-193. https://doi.org/10.1007/s10600-014-0911-2
- Khedr AI, Mohamed GA, Orabi MA, Ibrahim SR, Yamada K. 2015. Staphylopeptide A, a new cyclic tetrapeptide from culture broth of Staphylococcus sp. Phytochem. Lett. 13: 11-14. https://doi.org/10.1016/j.phytol.2015.05.007
- Szabo M, Veres Z, Baranyai Z, Jakab F, Jemnitz K. 2013. Comparison of human hepatoma HepaRG cells with human and rat hepatocytes in uptake transport assays in order to predict a risk of drug induced hepatotoxicity. PLoS One 8: e59432. https://doi.org/10.1371/journal.pone.0059432
- Vazquez-Rivera D, Gonzalez O, Guzman-Rodriguez J, Diaz- Perez AL, Ochoa-Zarzosa A, Lopez-Bucio J, et al. 2015. Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. Biomed. Res. Int. 2015: 197608.
- Cui CB, Usukata M, Kakeya H, Onose R, Okada G, Takahashi I, et al. 1996. Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J. Antibiot. (Tokyo) 49: 216-219. https://doi.org/10.7164/antibiotics.49.216
- Kondoh M, Usui T, Mayumi T, Osada H. 1998. Effects of tryprostatin derivatives on microtubule assembly in vitro and in situ. J. Antibiot. (Tokyo) 51: 801-804. https://doi.org/10.7164/antibiotics.51.801
- Folkes A, Brown SD, Canne LE, Chan J, Engelhardt E, Epshteyn S, et al. 2002. Design, synthesis and in vitro evaluation of potent, novel, small molecule inhibitors of plasminogen activator inhibitor-1. Bioorg. Med. Chem. Lett. 12: 1063-1066. https://doi.org/10.1016/S0960-894X(02)00078-1
- Martins MB, Carvalho I. 2007. Diketopiperazines: biological activity and synthesis. Tetrahedron 63: 9923-9932. https://doi.org/10.1016/j.tet.2007.04.105
- McCleland K, Milne P, Lucieto F, Frost C, Brauns S, Venter M, et al. 2004. An investigation into the biological activity of the selected histidine-containing diketopiperazines cyclo (His- Phe) and cyclo (His-Tyr). J. Pharm. Pharmacol. 56: 1143-1153. https://doi.org/10.1211/0022357044139
- Choi E, Park JS, Kim YJ, Jung JH, Lee J, Kwon H, et al. 2011. Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J. Appl. Microbiol. 110: 304-313. https://doi.org/10.1111/j.1365-2672.2010.04885.x
Cited by
- Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.01767
- Concepts and Methods to Access Novel Antibiotics from Actinomycetes vol.7, pp.2, 2017, https://doi.org/10.3390/antibiotics7020044
- Cyclo-( L -Phe- L -Pro), a Quorum-Sensing Signal of Vibrio vulnificus , Induces Expression of Hydroperoxidase through a ToxR-LeuO-HU-RpoS Signaling Pathway To Confer Res vol.86, pp.9, 2017, https://doi.org/10.1128/iai.00932-17
- Streptomycessp. MUM273b: A mangrove‐derived potential source for antioxidant and UVB radiation protectants vol.8, pp.10, 2017, https://doi.org/10.1002/mbo3.859
- Heterologous Expression of Daptomycin Biosynthetic Gene Cluster Via Streptomyces Artificial Chromosome Vector System vol.29, pp.12, 2017, https://doi.org/10.4014/jmb.1909.09022
- Bioactive Potential of Extracts of Labrenzia aggregata Strain USBA 371, a Halophilic Bacterium Isolated from a Terrestrial Source vol.25, pp.11, 2020, https://doi.org/10.3390/molecules25112546
- Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases vol.51, pp.3, 2020, https://doi.org/10.1007/s42770-020-00256-7
- Research progress on small peptides in Chinese Baijiu vol.72, pp.None, 2017, https://doi.org/10.1016/j.jff.2020.104081
- Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(l-Val-l-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in vol.202, pp.8, 2017, https://doi.org/10.1007/s00203-020-01896-x
- Adaptation to Endophytic Lifestyle Through Genome Reduction by Kitasatospora sp. SUK42 vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.740722
- Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.773095
- Antifungal Activity of 1,4-Dialkoxynaphthalen-2-Acyl Imidazolium Salts by Inducing Apoptosis of Pathogenic Candida spp. vol.13, pp.3, 2017, https://doi.org/10.3390/pharmaceutics13030312
- Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis vol.26, pp.9, 2017, https://doi.org/10.3390/molecules26092510
- Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164999