DOI QR코드

DOI QR Code

Development and evaluation of dam inflow prediction method based on Bayesian method

베이지안 기법 기반의 댐 예측유입량 산정기법 개발 및 평가

  • Kim, Seon-Ho (Department of Civil & Environmental Engineering, Sejong University) ;
  • So, Jae-Min (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kang, Shin-Uk (National Drought Information Analysis Center, Korea Water Resources Cooperation) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University)
  • 김선호 (세종대학교 건설환경공학과) ;
  • 소재민 (세종대학교 건설환경공학과) ;
  • 강신욱 (한국수자원공사 국가가뭄정보분석센터) ;
  • 배덕효 (세종대학교 건설환경공학과)
  • Received : 2017.03.09
  • Accepted : 2017.06.08
  • Published : 2017.07.31

Abstract

The objective of this study is to propose and evaluate the BAYES-ESP, which is a dam inflow prediction method based on Ensemble Streamflow Prediction method (ESP) and Bayesian theory. ABCD rainfall-runoff model was used to predict monthly dam inflow. Monthly meteorological data collected from KMA, MOLIT and K-water and dam inflow data collected from K-water were used for the model calibration and verification. To estimate the performance of ABCD model, ESP and BAYES-ESP method, time series analysis and skill score (SS) during 1986~2015 were used. In time series analysis monthly ESP dam inflow prediction values were nearly similar for every years, particularly less accurate in wet and dry years. The proposed BAYES-ESP improved the performance of ESP, especially in wet year. The SS was used for quantitative analysis of monthly mean of observed dam inflows, predicted values from ESP and BAYES-ESP. The results indicated that the SS values of ESP were relatively high in January, February and March but negative values in the other months. It also showed that the BAYES-ESP improved ESP when the values from ESP and observation have a relatively apparent linear relationship. We concluded that the existing ESP method has a limitation to predict dam inflow in Korea due to the seasonality of precipitation pattern and the proposed BAYES-ESP is meaningful for improving dam inflow prediction accuracy of ESP.

본 연구에서는 충주댐 유역에 대해 다목적 댐 예측유입량 산정기법 BAYES-ESP를 개발하고 평가하였다. BAYES-ESP 기법은 기존 ESP (Ensemble Streamflow Prediction) 기법에 베이지안 이론을 적용하여 개발하였으며, 수문모델은 ABCD를 활용하였다. 입력자료는 기온, 강수량 자료와 댐 관측유입량 자료를 활용하였으며, 기온 및 강수량은 기상청, 국토교통부, 한국수자원공사의 지점관측자료, 댐 관측유입량은 한국수자원공사의 자료를 이용하였다. 적용성 평가방법은 시계열 분석과 Skill Score를 활용하였으며, 평가기간은 1986~2015년이다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)는 매년 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. BAYES-ESP 댐 예측유입량(BAYES-ESP)는 ESP가 관측유입량에 비해 과소모의하는 경향을 보정하였으며, 특히 다우년에 개선효과가 있는 것으로 나타났다. 월별 평균 댐 관측유입량과의 Skill Score 비교분석결과 ESP는 1~3월에 SS가 비교적 높은 값을 보였으며, 나머지 월에는 음의 값을 나타내었다. BAYES-ESP는 ESP와 관측 값 간의 선형적 관계를 갖는 1~3월에 ESP의 정확도를 향상시키는 것으로 나타났다. ESP 기법은 국내 강수특성상 우리나라에 적용하기에는 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측연구에 가치가 있다고 판단된다.

Keywords

References

  1. Bradley, A. A., Habib, M., and Schwartz, S. S. (2016). "Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach." Water Resources Reserach, Vol. 51, pp. 7382-7400.
  2. Coelho, C. A. S., Pezzulli, S., Balmaseda, M., Doblas-Reyes, E. J., and Stephenson, D. B. (2004). "Forecast calibration and combination: a simple Bayesian approach for ENSO." Journal of Climate, Vol. 17, pp. 1504-1516. https://doi.org/10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2
  3. DeChant, C. M., and Moradkhani, H. (2011). "Improving the characterization of initial condition for ensemble streamflow prediction using data assimiliation." Hydrology and Earth System Science, Vol. 15, pp. 3399-3410. https://doi.org/10.5194/hess-15-3399-2011
  4. Duan, Q., Sorooshian, S., and Gupta, V. K. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models." Water Resources Research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  5. Fang, L., Qing-Cun, Z., and Chao-Fan, L. I. (2009). "A Bayesian scheme for probabilistic multi-model ensemble prediction of summer rainfall over the Yangtze river valley." Atmospheric and Oceanic Science Letters, Vol. 2, No. 5, pp. 314-319. https://doi.org/10.1080/16742834.2009.11446815
  6. Fread, P. L. (1998). "A perspective on hydrologic prediction trends. symposium on hydrology." American Meteorologic Society, Phoenix, Arizona, pp. J1-J6.
  7. Harrison, B., and Bales, R. (2015). "Skill assessment of water supply outlooks in the Colorado river basin." Hydrology, Vol. 2, No. 3, pp. 112-131. https://doi.org/10.3390/hydrology2030112
  8. Hay, L. E., McCabe, G. J., Clark, M. P., and Risley, J. C. (2009). "Reducing streamflow forcast uncertainty: application and qualitative assessment of the upper Klamath river basin, Oregon." Journal of the American Water Resources Assocication, Vol. 45, No. 3, pp. 580-596. https://doi.org/10.1111/j.1752-1688.2009.00307.x
  9. Hwang, J. S. (2005). Investigating applicability of monthly water balance models for climate change impact assessments. Master D. dissertation, Seoul National University, Seoul, Korea.
  10. Kang, M. S., Yu, M. S., and Yi, J. E. (2014). "Prediction of Andong reservoir inflow using ensemble technique." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 795-804. https://doi.org/10.12652/Ksce.2014.34.3.0795
  11. Kim, D. H. (2013). Bayesian Statistics using R and WinBUGS. Freeacademy, pp.101-144.
  12. Kim, H. S., Kim, H. S., Jeon, G. I., and Kang, S. W. (2016). "Assessment of 2014-2015 drought events." Journal of Korea Water Resoureces, Vol. 49, No. 7, pp. 61-75. https://doi.org/10.3741/JKWRA.2016.49.1.61
  13. Kim, W. S., Yoon, Y. N., and Choi, Y. B. (1991). "A study on the application of Thomas monthly runoff prediction model for ungauged watershed." Journal of Korea Water Resources Association, Vol. 24, No. 4. pp. 85-91.
  14. Korea Institute of Construction Technology (2011). Water vision 2020, Goyang, Korea.
  15. K-water (2017). Drought information analysis improvement and development direction. Report, K-water, Daejeon, Korea.
  16. Lee, J. H., and Kim, C. J. (2012). "A multimodel assessment of climate change effect on the drought severity-duration-frequency relationship." Hydrological Process, Vol. 27, No.19, pp. 2800-2813. https://doi.org/10.1002/hyp.9390
  17. Li, W., and Sankarasubramanian, A. (2012). "Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination." Water Resources Research, Vol. 48, doi: 10.1029/2011WR011380.
  18. Luo, L., Wood, E. F., and Pan, M. (2007). "Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions." Journal of Geophysical Research, Vol. 112, doi: 10.1029/2006JD007655.
  19. Martinez, G. F., and Gupta, H. V. (2010). "Toward improved identification of hydrlogical models: a diagnostic evaluation of the "abcd" monthly water balance model for the conterminous United States." Water Resources Research, AGU, Vol. 46, No. 8, doi: 10.1029/2009WR008294.
  20. Najafi, M. R., Moradkhani, H., and Piechota, Y. C. (2012). "Ensemble streamflow prediction: climate signal weighting methods vs. climate forecast system reanalysis." Journal of Hydrology, Vol. 442-443, pp.105-116. https://doi.org/10.1016/j.jhydrol.2012.04.003
  21. National Emergency Management Agency (NEMA) (2013). Establishment of national drought disaster information system. Sejong, Korea.
  22. Son, K. H. (2015). Enhancement of hydrological drought outllok accuracy using Bayesian method and their real-time prediction applicability. Ph. D. dissertation, Sejong University, Seoul, Korea.
  23. Tang, Q., and Lettenmaier, D. P. (2010). "Use of satellite snow-cover data for streamflow prediction in the Feather river basin, California." International Journal of Remote Sensing, Vol. 31, pp. 3745-3762. https://doi.org/10.1080/01431161.2010.483493
  24. Thomas, H. A. (1981). Improved methods for national water assessment. Report, United States Water Resources Council, Washington, D.C.