References
- Bradley, A. A., Habib, M., and Schwartz, S. S. (2016). "Climate index weighting of ensemble streamflow forecasts using a simple Bayesian approach." Water Resources Reserach, Vol. 51, pp. 7382-7400.
- Coelho, C. A. S., Pezzulli, S., Balmaseda, M., Doblas-Reyes, E. J., and Stephenson, D. B. (2004). "Forecast calibration and combination: a simple Bayesian approach for ENSO." Journal of Climate, Vol. 17, pp. 1504-1516. https://doi.org/10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2
- DeChant, C. M., and Moradkhani, H. (2011). "Improving the characterization of initial condition for ensemble streamflow prediction using data assimiliation." Hydrology and Earth System Science, Vol. 15, pp. 3399-3410. https://doi.org/10.5194/hess-15-3399-2011
- Duan, Q., Sorooshian, S., and Gupta, V. K. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models." Water Resources Research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
- Fang, L., Qing-Cun, Z., and Chao-Fan, L. I. (2009). "A Bayesian scheme for probabilistic multi-model ensemble prediction of summer rainfall over the Yangtze river valley." Atmospheric and Oceanic Science Letters, Vol. 2, No. 5, pp. 314-319. https://doi.org/10.1080/16742834.2009.11446815
- Fread, P. L. (1998). "A perspective on hydrologic prediction trends. symposium on hydrology." American Meteorologic Society, Phoenix, Arizona, pp. J1-J6.
- Harrison, B., and Bales, R. (2015). "Skill assessment of water supply outlooks in the Colorado river basin." Hydrology, Vol. 2, No. 3, pp. 112-131. https://doi.org/10.3390/hydrology2030112
- Hay, L. E., McCabe, G. J., Clark, M. P., and Risley, J. C. (2009). "Reducing streamflow forcast uncertainty: application and qualitative assessment of the upper Klamath river basin, Oregon." Journal of the American Water Resources Assocication, Vol. 45, No. 3, pp. 580-596. https://doi.org/10.1111/j.1752-1688.2009.00307.x
- Hwang, J. S. (2005). Investigating applicability of monthly water balance models for climate change impact assessments. Master D. dissertation, Seoul National University, Seoul, Korea.
- Kang, M. S., Yu, M. S., and Yi, J. E. (2014). "Prediction of Andong reservoir inflow using ensemble technique." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 795-804. https://doi.org/10.12652/Ksce.2014.34.3.0795
- Kim, D. H. (2013). Bayesian Statistics using R and WinBUGS. Freeacademy, pp.101-144.
- Kim, H. S., Kim, H. S., Jeon, G. I., and Kang, S. W. (2016). "Assessment of 2014-2015 drought events." Journal of Korea Water Resoureces, Vol. 49, No. 7, pp. 61-75. https://doi.org/10.3741/JKWRA.2016.49.1.61
- Kim, W. S., Yoon, Y. N., and Choi, Y. B. (1991). "A study on the application of Thomas monthly runoff prediction model for ungauged watershed." Journal of Korea Water Resources Association, Vol. 24, No. 4. pp. 85-91.
- Korea Institute of Construction Technology (2011). Water vision 2020, Goyang, Korea.
- K-water (2017). Drought information analysis improvement and development direction. Report, K-water, Daejeon, Korea.
- Lee, J. H., and Kim, C. J. (2012). "A multimodel assessment of climate change effect on the drought severity-duration-frequency relationship." Hydrological Process, Vol. 27, No.19, pp. 2800-2813. https://doi.org/10.1002/hyp.9390
- Li, W., and Sankarasubramanian, A. (2012). "Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination." Water Resources Research, Vol. 48, doi: 10.1029/2011WR011380.
- Luo, L., Wood, E. F., and Pan, M. (2007). "Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions." Journal of Geophysical Research, Vol. 112, doi: 10.1029/2006JD007655.
- Martinez, G. F., and Gupta, H. V. (2010). "Toward improved identification of hydrlogical models: a diagnostic evaluation of the "abcd" monthly water balance model for the conterminous United States." Water Resources Research, AGU, Vol. 46, No. 8, doi: 10.1029/2009WR008294.
- Najafi, M. R., Moradkhani, H., and Piechota, Y. C. (2012). "Ensemble streamflow prediction: climate signal weighting methods vs. climate forecast system reanalysis." Journal of Hydrology, Vol. 442-443, pp.105-116. https://doi.org/10.1016/j.jhydrol.2012.04.003
- National Emergency Management Agency (NEMA) (2013). Establishment of national drought disaster information system. Sejong, Korea.
- Son, K. H. (2015). Enhancement of hydrological drought outllok accuracy using Bayesian method and their real-time prediction applicability. Ph. D. dissertation, Sejong University, Seoul, Korea.
- Tang, Q., and Lettenmaier, D. P. (2010). "Use of satellite snow-cover data for streamflow prediction in the Feather river basin, California." International Journal of Remote Sensing, Vol. 31, pp. 3745-3762. https://doi.org/10.1080/01431161.2010.483493
- Thomas, H. A. (1981). Improved methods for national water assessment. Report, United States Water Resources Council, Washington, D.C.