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ORDER RELATED CONCEPTS FOR

ARBITRARY GROUPOIDS

Hee Sik Kim, Joseph Neggers, and Keum Sook So

Abstract. In this paper, we introduce and explore suggested notions
of ‘above’, ‘below’ and ‘between’ in general groupoids, Bin(X), as well
as in more detail in several well-known classes of groupoids, including
groups, semigroups, selective groupoids (digraphs), d/BCK-algebras, lin-
ear groupoids over fields and special cases, in order to illustrate the use-
fulness of these ideas. Additionally, for groupoid-classes (e.g., BCK-
algebras) where these notions have already been accepted in a standard
form, we look at connections between the several definitions which result

from our introduction of these ideas as presented in this paper.

1. Introduction

In the general description of the realm of mathematics one may recognize
“kingdoms” such as logic, algebra, geometry, measure and quantity and de-
rived “phyla” which may be considered hybrid creatures derived from elements
belonging to these kingdoms. One such hybrid creature is the phylum which
we shall call “order”. In this phylum we describe possible “ordered struc-
tures” where the structure may be any structure whatsoever, which is then
equipped with an order relation of some sort. Examples abound in the liter-
ature, the most elementary (but definitely not the most simple being the set
N of natural numbers equipped with the order relation 1 < 2 < 3 < 4 < · · · ;
2 < 3 < 4 < 5 < · · · ; n < n + 1 < n + 2 < n + 3 < · · · , · · · et cetera. If we
consider N as belonging to the “kingdom” of measure and quantity, then (N, <)
can be thought of as a hybrid creature which generates a phylum of derived
constructions. In the kingdom of algebra, there is the phylum of binary systems
on a set X when equipped itself with a binary operation on the Bin(X), to
yield semigroups (Bin(X),✷). The increased study of this phylum is a recent
phenomenon ([7]) even though specific instance of elements (X, ∗) of Bin(X)
have been studied to advantage for a very long time, with many of their prop-
erties discussed in books on groups, semigroups, rings, fields, etc., and even
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in more general studies such as Bruck’s “A survey of binary systems” ([4]).
Given this phylum we can for example create the hybrid creature “topological
binary systems” consisting of groupoids (X, ∗, τ), where τ is a topology on X

such that the operation ∗ is bi-continuous. The study of this creature in full
generality has not been done yet, but certainly appears to have possibilities.

In this paper the hybrid structure involves groupoids (X, ∗) equipped with
several order structures which we have termed below, above and as a conse-
quence a relation x ≤ y (xβy and yαx) and further relations z ∈ 〈x, y〉β ,
z ∈ 〈x, y〉α, with xβz, zβy and xαz, zαy and xαz, zαy respectively, as β-
between-ness and α-between-ness, from which further information can then be
obtained, especially when one specializes to specific types of groupoids. The
point is that in doing so, one provides a sense of “order” to the entire phylum
of binary systems in what appears from the following to be a simple way.

Historically, the notion of the semigroup (Bin(X), ✷) was introduced by H.
S. Kim and J. Neggers ([7]). H. Fayoumi ([5]) introduced the notion of the
center ZBin(X) in the semigroup Bin(X) of all binary systems on a set X ,
and showed that if (X, •) ∈ ZBin(X), then x 6= y implies {x, y} = {x•y, y•x}.
Moreover, she showed that a groupoid (X, •) ∈ ZBin(X) if and only if it is
a locally-zero groupoid. J. S. Han et al. ([6]) introduced the notion of hyper-
groupoids (HBin(X),✷), and showed that (HBin(X),✷) is a supersemigroup
of the semigroup (Bin(X),✷) via the identification x ←→ {x}. They proved
that (HBin∗(X),⊖, [∅]) is a BCK-algebra. S. J. Shin et al. ([11]) introduced
the notion of abelian fuzzy subsets on a groupoid, and discussed diagonal sym-
metric relations, convex sets, and the fuzzy center on Bin(X). In [12] they
discussed properties of a class of real-valued functions on a groupoid (X, ∗)
and fuzzy subsets on X related to (Bin(X),✷). S. S. Ahn et al. ([1]) studied
fuzzy upper bounds in Bin(X). J. Zhan et al. ([17]) generalized the left-zero
semigroup by introducing the notions of a weak-zero groupoid and an (X,N)-
zero groupoid. P. A. Allen et al. ([3]) studied several types of groupoids related
to semigroups, i.e., twisted semigroups. P. J. Allen et al. ([2]) developed a the-
ory of companion d-algebras, and they showed that if (X, ∗, 0) is a d-algebra,
then (Bin(X),⊕, ⋄0) is also a d-algebra. S. Z. Song et al. ([13]) studied soft
saturated values and soft dried values in BCK/BCI-algebras. Thus, it is clear
that the study of groupoids (binary systems) is undergoing vigorous develop-
ment at present to which this paper aims to make a further useful contribution
as well.

2. Preliminaries

A d-algebra ([10]) is a non-empty set X with a constant 0 and a binary
operation “ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y
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for all x, y ∈ X .
For brevity, we also call X a d-algebra. In X we can define a binary relation

“ ≤ ” by x ≤ y if and only if x ∗ y = 0.
If K is a field, then (K, ∗, 0) with x∗y := x(x−y) is an example of d-algebra

which is not a BCK-algebra.
A BCK-algebra ([8]) is a d-algebra X satisfying the following additional

axioms:

(IV) (x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0

for all x, y, z ∈ X . It is well-known that if (X, ∗, 0) is a BCK-algebra, then
(X,≤) forms a partially ordered set with the least element 0. We refer to [9, 14]
for further information on partially ordered sets and we refer to [15] for the
graph theory.

Given a non-empty set X , we let Bin(X) denote the collection of all group-
oids (X, ∗), where ∗ : X × X → X is a map and where ∗(x, y) is written in
the usual product form. Given elements (X, ∗) and (X, •) of Bin(X), define a
product “✷” on these groupoids as follows:

(X, ∗)✷ (X, •) = (X,✷),

where

x✷ y = (x ∗ y) • (y ∗ x)

for any x, y ∈ X . Using that notion, H. S. Kim and J. Neggers proved the
following theorem.

Theorem 2.2 ([7]). (Bin(X), ✷) is a semigroup, i.e., the operation “✷” as

defined in general is associative. Furthermore, the left- zero-semigroup is the

identity for this operation.

3. Below, above and between

Let (X, ∗) be a groupoid and let x, y, z ∈ X . x is said to be below y, denoted
by xβy, if x ∗ y = y; x is said to be above y, denoted by xαy, if x ∗ y = x.
An element z ∈ X is said to be β-between x and y, denoted by z ∈ 〈x, y〉β , if
xβz, zβy; an element z is said to be α-between x and y, denoted by z ∈ 〈x, y〉α,
if xαz, zαy.

Example 3.1. Let D = (V,E) be a digraph and let (V, ∗) be its associated
groupoid, i.e., ∗ is a binary operation on V defined by

x ∗ y :=

{

x if x→ y 6∈ E,

y otherwise.
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Let D = (V,E) be a digraph with the following graph:
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Then its associated groupoid (V, ∗) has the following table:

∗ 1 2 3 4
1 1 1 3 1
2 2 2 2 4
3 3 2 3 3
4 4 4 4 4

It is easy to see that there are no elements x, y ∈ V such that both xαy and xβy

hold simultaneously. Note that the relations α and β need not be transitive.
In fact, 1 → 3, 3 → 2 in E, but not 1 → 2 in E imply that 1β3, 3β2, but not
1β2. Similarly, 1α4, 4α3, but not 1α3.

Remark. In Example 3.1, z ∈ 〈x, y〉β means that xβz, zβy, i.e., x→ z → y in
E. Similarly, z ∈ 〈x, y〉α means that xαz, zαy, i.e., no arrow from x to z, and
no arrow from z to y in E.

Proposition 3.2. Let (X, ∗) be a left-zero-semigroup. Then for any x, y, z ∈
X,

(i) xαy and z ∈ 〈x, y〉α,
(ii) xβy implies x = y,

(iii) z ∈ 〈x, y〉β implies x = y = z.

Proof. (i) Since x ∗ y = x for any x, y ∈ X , we have xαy. Given x, y, z ∈ X ,
since (X, ∗) is the left-zero-semigroup, x ∗ z = x, z ∗ y = z, which prove that
xαz, zαy, i.e., z ∈ 〈x, y〉α.

(ii) If xβy, then x ∗ y = y. Since (X, ∗) is the left-zero-semigroup, we have
x = x ∗ y = y.

(iii) If z ∈ 〈x, y〉β , then xβz and zβy. By (ii), we obtain x = z = y. �

Example 3.3. Let R be the set of all real numbers and let x, y ∈ R. Define a
binary operation “∗” on R by x ∗ y := xy, the ordinary multiplication, for any
x, y ∈ R. Then it is easy to see that 1 ∈ 〈1, y〉β , z ∈ 〈1, 0〉β, 0 ∈ 〈x, 0〉β for all
x, y, z ∈ R.

Proposition 3.4. Let (X, ∗) be a semigroup. Then the relations α, β are tran-

sitive.

Proof. Let xβy and yβz. Then x ∗ y = y, y ∗ z = z. It follows that x ∗ z =
x ∗ (y ∗ z) = (x ∗ y) ∗ z = y ∗ z = z, proving xβz.

Let xαy and yαz. Then x∗y = x, y∗z = y. It follows that x∗z = (x∗y)∗z =
x ∗ (y ∗ z) = x ∗ y = x, proving xαz. �
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The converse of Proposition 3.4 need not be true in general.

Example 3.5. Let R be the set of all real numbers and let x, y ∈ R. If we
define a binary operation “∗” on R by x∗y := y2, then (R, ∗) is not a semigroup.
In fact, (x∗y)∗z = z2, while x∗(y∗z) = z4. If xβy and yβz, then z = y∗z = z2

and hence z = 0 or z = 1, which implies that x ∗ z = z, i.e., xβz, proving that
β is transitive.

Proposition 3.6. Let (X, ∗) be a groupoid. Then for any x, y, z ∈ X,

(i) if xβy, xαy, then x = y;
(ii) if (X, ∗) is commutative, i.e., x ∗ y = y ∗ x, then xβy ⇐⇒ yαx;
(iii) if xβy, yαx, then x ∗ y = y ∗ x = y.

Let (X, ∗) be a groupoid and let x, y ∈ X . Define a binary relation “≤” on
X by x ≤ y ⇐⇒ xβy, yαx. Then it is easy to see that ≤ is anti-symmetric.

Proposition 3.7. Let (X, ∗) be a groupoid. If α, β are transitive, then ≤ is

transitive.

Proof. Let x ≤ y, y ≤ z. Then xβy, yαx and yβz, zαy. Since α, β are transitive,
xβz, zαx, i.e., x ≤ z. �

Proposition 3.8. If (X, ∗) is a semigroup with x ∗ x = x for all x ∈ X, then

(X,≤) is a poset.

Proof. By Propositions 3.4 and 3.7, the relation ≤ is transitive. Since x∗x = x

for all x ∈ X , we have xβx, xαx, which implies x ≤ x. This proves the
proposition. �

Let (X, ∗) be a groupoid and let x, y ∈ X . We define an interval as follows:

[x, y] := {q ∈ X |x ≤ q ≤ y}.

The following proposition can be easily proved.

Proposition 3.9. Let (X, ∗) be a groupoid and let x, y ∈ X. Then z ∈ [x, y]
if and only if z ∈ 〈x, y〉β and z ∈ 〈y, x〉α.

Proposition 3.10. Let (X, ∗, 0) be a d-algebra. If X×X = α∪β as a relation,

then (x ∗ (x ∗ y)) ∗ y = 0 for all x, y ∈ X.

Proof. Given x, y ∈ X , if xαy, then x ∗ y = x and hence (x ∗ (x ∗ y)) ∗ y =
(x ∗ x) ∗ y = 0 ∗ y = 0. If xβy, then x ∗ y = y and hence (x ∗ (x ∗ y)) ∗ y =
(x ∗ y) ∗ y = y ∗ y = 0, proving the proposition. �

Proposition 3.11. Let (X, ∗, 0) be a d-algebra and let x, z ∈ X. If xαy, xαz,

then ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 for all y ∈ X.

Proof. If xαy, xαz, then x∗y = x, x∗z = x and hence ((x∗y)∗(x∗z))∗(z∗y) =
(x ∗ x) ∗ (z ∗ y) = 0 ∗ (z ∗ y) = 0. �

The converse of Propositions 3.11 and 3.12 need not be true in general.
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Example 3.12. Let X := {0, 1, 2, 3, 4} be a set. Define a binary operation
“∗” on X as follows:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 1 0
3 3 1 1 0 0
4 4 1 1 1 0

Then (X, ∗, 0) is a BCK-algebra ([8, p. 249]) and hence it is a d-algebra. Since
3 ∗ 2 = 1, we have (3, 2) 6∈ α∪ β, i.e., the converse of Proposition 3.10 does not
hold. Moreover, since 2 ∗ 1 = 1 6= 2, 2 ∗ 3 = 1 6= 2, the converse of Proposition
3.11 does not hold either.

Example 3.13. Let R be the set of all real numbers and let x, y ∈ R. If we
define x ∗ y := x(x − y) for all x, y ∈ R, then (R, ∗, 0) is a d-algebra, but not
a BCK-algebra. If xβ1, then x ∗ 1 = 1 and hence x2 − x − 1 = 0, which

means x = 1±
√

5
2 , i.e., the Fibonacci golden sections lie below 1. If 1βx, then

x = 1
2 . Assume that xβy and xβz. Then (z − y)(x − 1) = 0, and hence

either z = y or y = z = 1
2 , proving that the left cancelation law holds. Also

given x 6= 1, we have x2 = (1 + x)y and y = x2

1+x
is uniquely determined

as being related to x in the β relation. Thus, given x 6= 1, we have the

sequence {x, x2

1+x
, x4

(1+x)(1+x+x2) ,
x8

(1+x)(1+x+x2)[(1+x)(1+x+x2)+x4] , . . .} Hence for

this d-algebra xβy and xβz implies y = z.

Problem. Construct a d-algebra (X, ∗, 0) such that xβy, xβz, y 6= z is possible
for “many” x, i.e., it is impossible for exceptional x, e.g., x = 0, where 0 ∗ y =
y = 0, i.e., 0β0 and aαy for all y ∈ X .

4. Below, above and between in semigroups

Let (X, ∗) be a groupoid and let x, y ∈ X . We define some notations as
below:

β(y) := {x ∈ X |xβy}, α(x) := {y ∈ X |xαy}

(x)β := {y ∈ X |xβy}, (y)α := {x ∈ X |xαy}

Let (X, ∗) be a finite groupoid and let Eβ := {(x, y) |x ∗ y = y}. Then |Eβ |
is the β-arrow number of (X, ∗). It follows that

∑

x∈X |(x)β | =
∑

y∈X |β(y)| =

|Eβ | is an analog of a well-known result in graph theory.
Similarly, if Eα := {(x, y) |x ∗ y = x}, then |Eα| is the α-arrow number of

(X, ∗). Again it follows that
∑

x∈X |α(x)| =
∑

y∈X |(y)α| = |Eα| using the

same observation, i.e., every “arrow” (x, y) has precisely one “initial” element
x and precisely one “terminal” element y.

If (X, ∗) is a finite left-zero-semigroup, then Eβ = {(x, y) |x ∗ y = x = y}
and Eβ is the diagonal △(X) = {(x, x) |x ∈ X} of X ×X , so that |Eβ | = |X |.
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On the other hand Eα = {(x, y) |x ∗ y = x} = X ×X and Eα| = |X |
2, so that

if |X | ≥ 2, then |Eα| = |Eβ |
2.

Example 4.1. Let R be the set of all real numbers and let x, y ∈ R. Define a
binary operation “∗” on R by x ∗ y := y2. Then

β(y) =

{

R if y = 0 or y = 1,
∅ otherwise,

and α(x) = {
√
x,−
√
x}, (x)β = {0, 1}, (y)α = [0,∞).

Example 4.2. Let (A,+) be an abelian group and let x, y ∈ A. Then xβy

means x + y = y, i.e., x = 0. Hence β(y) = {0}. Similarly, we obtain α(x) =
{0}. If x 6= 0, y 6= 0, then (x)β = ∅ = (y)α and (0)β = A = (0)α.

Proposition 4.3. Let (X, ∗) be a semigroup and let x, y ∈ X. Then β(y) and
α(x) are subsemigroups of (X, ∗).

Proof. If a, b ∈ β(y), then a∗ y = y, b∗ y = y and hence (a∗ b)∗ y = a∗ (b∗ y) =
a ∗ y = y, proving a ∗ b ∈ β(y). If a, b ∈ (x)β , then a ∗ y = a, b ∗ y = b and hence
(a ∗ b) ∗ y = a ∗ (b ∗ y) = a ∗ b, proving a ∗ b ∈ α(x). �

Proposition 4.4. Let (X, ∗) be a semigroup and let x, y ∈ X. Then (x)β is a

right ideal and (y)α is a left ideal of (X, ∗).

Proof. If a ∈ (x)β and q ∈ X , then x ∗ (a ∗ q) = (x ∗ a) ∗ q = a ∗ q, and hence
a ∗ q ∈ (x)β .

If a ∈ (y)α and q ∈ X , then (q ∗ a) ∗ y = q ∗ (a ∗ y) = q ∗ a, and hence
q ∗ a ∈ (y)α. �

Proposition 4.5. Let (X, ∗) be a groupoid and let e ∈ X. Then e is the right

(resp., left) identity if and only if e ∈ ∩x∈X α(x) (resp., e ∈ ∩x∈X β(x)).

Proof. It follows that

e : right identity⇐⇒ x ∗ e = x, ∀x ∈ X

⇐⇒ e ∈ α(x), ∀x ∈ X

⇐⇒ e ∈ ∩x∈X α(x).

The proof for the left identity is similar to the right identity case, and we omit
it. �

Note that ∩x∈X α(x) (resp., ∩x∈X β(x)) is a left (resp., right)-zero-semigroup
if it is a non-empty set.

Theorem 4.6. Let (X, ∗) be a groupoid and let ∅ 6= L ⊆ X. Then the following

are equivalent.

(1) (L, ∗) is a left-zero-semigroup;
(2) L ⊆ ∩x∈L α(x);
(3) L ⊆ ∩x∈L (y)α.
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Proof. (1)=⇒(2). Since (L, ∗) is a left-zero-semigroup, x∗y = x for all x, y ∈ L.
It follows that xαy, i.e., y ∈ α(x) for all x, y ∈ L. Hence y ∈ ∩x∈L α(x) for any
y ∈ L, proving that L ⊆ ∩x∈L α(x).

(2)=⇒(1). If L ⊆ ∩x∈L α(x), then y ∈ ∩x∈L α(x) for any y ∈ L. It follows
that x ∗ y = x for all x, y ∈ L, proving that (L, ∗) is a left-zero-semigroup.

(1)=⇒(3). Since (L, ∗) is a left-zero-semigroup, x ∗ y = x for all x, y ∈ L. It
follows that x ∈ (y)α for all y ∈ L, i.e., x ∈ ∩x∈L (y)α. Hence L ⊆ ∩x∈L (y)α.

(3)=⇒(1). For any x, y ∈ L, since L ⊆ ∩x∈L (y)α, we have x ∈ ∩x∈L (y)α,
which means that xαy for any x, y ∈ L. Hence x ∗ y = x for all x, y ∈ L,
proving that (L, ∗) is a left-zero-semigroup. �

Let (X, ∗) be a groupoid and let ∅ 6= K ⊆ L, u ∈ X . We denote by Kαu if
u ∈ ∩x∈K α(x), i.e., u ∈ α(x) for all x ∈ K, or equivalently x ∗ u = x for all
x ∈ K, i.e., u is a right identity in K. The subset K is said to be lower-α-closed
if Kαu implies u ∈ K.

Example 4.7. Let X := {e, a, b, c} be a set. Define binary operations ∗i on
X as follows:

∗1 e a b c

e e e b e

a a a b e

b b b b b

c b b b c

∗2 e a b c

e e a b e

a a a a a

b b a b b

c c c c c

If we let K1 := {e, a, b}, then K1 is lower-α-closed in (X, ∗1). If we let K2 :=
{a, b, c}, then K2 is not lower-α-closed in (X, ∗2), since K2 α e, but e 6∈ K2.

Proposition 4.8. Let (X, ∗) be a groupoid and let K be a lower-α-closed subset

of X and K ⊆ T . Then T is also lower-α-closed in (X, ∗).

Proof. Let u ∈ X such that Tαu. Then x ∗ u = x for all x ∈ T . Since K ⊆ T ,
x ∗ u = x for all x ∈ K. It follows that Kαu. Since K is lower-α-closed,
u ∈ K ⊆ T , proving that T is also lower-α-closed in (X, ∗). �

Similarly, we can define the notion of upper-α-closed subsets in (X, ∗).

5. Below, above and between in Bin(X)

In this section, we discuss the notions of below, above and between in
Bin(X).

Proposition 5.1. Let (X, ·) be a left-zero-semigroup. Then (X, ·) β (X, ⋆) and
(X, ⋆)α (X, ·) for any (X, ⋆) ∈ Bin(X).

Proof. For any (X, ⋆) ∈ Bin(X), since (X, ·) is a left-zero-semigroup, (x · y) ⋆
(y ·x) = x⋆y for any x, y ∈ X , i.e., (X, ·)✷(X, ⋆) = (X, ⋆). Hence (X, ·)β (X, ⋆).

For any (X, ⋆) ∈ Bin(X), since (X, ·) is a left-zero-semigroup, (x⋆y)·(y⋆x) =
x ⋆ y for any x, y ∈ X , i.e., (X, ⋆)✷(X, ·) = (X, ⋆). Hence (X, ⋆)α (X, ·). �
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Given (X, ⋆) ∈ Bin(X), we define a set βr[(X, ⋆)] by

βr[(X, ⋆)] := {(X, ∗) ∈ Bin(X) | (X, ∗)β (X, ⋆)}.

By Proposition 5.1, every βr[(X, ⋆)] contains a left-zero-semigroup, and
hence βr[(X, ⋆)] is not empty.

Proposition 5.2. (βr[(X, ⋆)],✷) is a subsemigroup of (Bin(X),✷).

Proof. Given (X, ∗), (X,▽) ∈ (βr[(X, ⋆)],✷), we have (X, ∗)✷(X, ⋆) = (X, ⋆)
and (X,▽)✷(X, ⋆) = (X, ⋆). It follows that

[(X, ∗)✷(X,▽)]✷(X, ⋆) = (X, ∗)✷[(X,▽)✷(X, ⋆)]

= (X, ∗)✷(X, ⋆)

= (X, ⋆).

Hence (X, ∗)✷(X,▽)β(X, ⋆), proving that (X, ∗)✷(X,▽) ∈ (βr[(X, ⋆)],✷). �

Similarly, given (X, ⋆) ∈ Bin(X), we define a set βl[(X, ⋆)] by

βl[(X, ⋆)] := {(X, ∗) ∈ Bin(X) | (X, ⋆)β (X, ∗)}.

We obtain that βl[(X, ⋆)] is non-empty and a subsemigroup of (Bin(X), ✷)
for any (X, ⋆) ∈ Bin(X).

If (X, ·) is a left-zero-semigroup, then it is easy to see that βl[(X, ·)] =
Bin(X).

Two groupoids (X, ·) and (X, ⋆) are said to be βl-similar (βr-similar, resp.)
if βl[(X, ·)] = βl[(X, ⋆)] (βr[(X, ·)] = βr[(X, ⋆)], resp.).

Example 5.3. Let X := R be the set of all real numbers. Define a binary
operation · on X by x · y := x2 for all x, y ∈ X . Let (X, ∗) ∈ βl[(X, ·)]. Then
(X, ∗)✷(X, ·) = (X, ·). Hence (x ∗ y) · (y ∗ x) = x · y for all x, y ∈ X . It follows
that (x ∗ y)2 = x2 and hence x ∗ y ∈ {−x, x} for all x, y ∈ X . Define a binary
operation ⊙ on X by x⊙ y := x4 for all x, y ∈ X . If (X, ∗) ∈ βl[(X,⊙)], then
(X, ∗)✷(X,⊙) = (X,⊙). Hence (x∗y)⊙ (y ∗x) = x4 for all x, y ∈ X . It follows
that [(x ∗ y)2−x2][(x ∗ y)2 +x2] = 0 and hence x ∗ y ∈ {−x, x} for all x, y ∈ X .
Thus βl[(X, ·)] = βl[(X,⊙)], i.e., (X, ·) is βl-similar to (X,⊙).

Let X := R be the set of all real numbers. Define a binary operation ⊘ on
X satisfying (−x)⊘ (−y) = (−x)⊘ y = x⊘ (−y) = x⊘ y for all x, y ∈ X . We
call such a groupoid (X,⊘) an even groupoid.

Proposition 5.4. Let (X,⊘) be an even groupoid. If (X, ∗) ∈ Bin(X) such

that x ∗ y ∈ {−x, x} for all x, y ∈ X, then (X, ∗) ∈ βr[(X,⊘)].

Proof. Let (X,✷) := (X, ∗)✷(X,⊘). Then x✷y = (x ∗ y) ⊘ (y ∗ x) ∈ {(−x) ⊘
(−y), (−x) ⊘ y, x ⊘ (−y), x ⊘ y} = {x ⊘ y} for all x, y ∈ X . It follows that
x✷y = x ⊘ y for all x, y ∈ X . This proves that (X, ∗)✷(X,⊘) = (X,⊘), i.e.,
(X, ∗) ∈ βr[(X,⊘)]. �
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6. Order preserving mappings and medial groupoids

Given groupoids (X, ∗), (Y, •), a mapping F : X → Y is said to be β-order-

preserving if xβy implies F (x)βF (y), i.e., x∗y = y implies F (x)•F (y) = F (y).

Proposition 6.1. Every groupoid homomorphism F : (X, ∗) → (Y, •) is β-

order-preserving.

Proof. If xβy, then x ∗ y = y. Since F is a groupoid homomorphism, we have
F (y) = F (x ∗ y) = F (x) • F (y), proving that F is β-order-preserving. �

The converse of Proposition 6.1 need not be true in general.

Example 6.2. Let R be the set of all real numbers. Define a binary operation
“∗” on R by x ∗ y := x+y

2 . Then x ∗ x = x for all x ∈ R, and if x < y, then
x < x ∗ y < y for all x, y ∈ R. Let (X, •) be any left-zero-semigroup and
let F : (X, •) → (R, ∗) be any function. Then F is β-order-preserving. In
fact, if xβy, then x • y = y. Since (X, •) is the left-zero-semigroup, we have
x = x•y = y and hence F (x)∗F (y) = F (x)∗F (x) = F (x) = F (y), which shows
that F (x)βF (y). Assume that F is a groupoid homomorphism. If m,n ∈ X

such that F (m) < F (n), then F (m) < F (m) ∗ F (n) < F (n). Since (X, •) is
the left-zero-semigroup, we obtain F (m) < F (m) ∗ F (n) = F (m • n) = F (m),
a contradiction.

Note that if (X, ∗), (Y, •) and (X, ⋄) are groupoids and if F : (X, ∗)→ (Y, •),
G : (Y, •)→ (Z, ⋄) are β-order-preserving, then G ◦ F : (X, ∗)→ (Z, ⋄) is also
β-order-preserving.

Proposition 6.3. Let F : (X, ∗)→ (Y, •) be a β-order-preserving mapping.

(i) if (X, ∗) is the left-zero-semigroup and xβy, then F (x) is an idempotent

on (Y, •),
(ii) if (X, ∗) is the right-zero-semigroup, then (ImF, •) is a subgroupoid of

(Y, •).

Proof. (i) If xβy, then x = x ∗ y = y, (X, ∗) is the left-zero-semigroup. Since
F is a β-order-preserving mapping, we have F (x) = F (y) = F (x) • F (y) =
F (x) • F (x).

(ii) If (X, ∗) is the right-zero-semigroup, then xβy = y for all x, y ∈ X .
Since F is a β-order-preserving mapping, F (x)βF (y), i.e., F (x) •F (y) = F (y).
Hence (ImF, •) is a subgroupoid of (Y, •). �

A groupoid mapping F : (X, ∗)→ (Y, •) is said to be a 〈β〉-order-preserving
if z ∈ 〈x, y〉β then F (z) ∈ 〈F (x), F (y)〉β .

Proposition 6.4. If F : (X, ∗)→ (Y, •) is β-order-preserving, then it is 〈β〉-
order-preserving.

Proof. If z ∈ 〈x, y〉β then xβz, zβy. Since F is β-order-preserving, we obtain
F (x)βF (z), F (z)βF (y). It follows that F (z) ∈ 〈F (x), F (y)〉β . �
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Proposition 6.5. Let (X, ∗) ∈ Bin(X) with the property (P ) : for any y ∈ X,

there exists a z ∈ X such that yβz. If F : (X, ∗) → (Y, •) is 〈β〉-order-
preserving, then it is β-order-preserving.

Proof. If xβy, then there exists a z ∈ X such that yβz, since (X, ∗) has the
property (P ). Since xβy, we have y ∈ 〈x, z〉β . Since F is 〈β〉-order-preserving,
we obtain F (y) ∈ 〈F (x), F (z)〉β , proving that F (x)βF (y). �

Proposition 6.6. Let (X, ∗) be a group with identity e and let (Y, •) be a

group with identity ê. If F : (X, ∗)→ (Y, •) is a map such that F (e) = ê (not
necessarily a group homomorphism), then F is β-order-preserving.

Proof. If xβy, then x∗y = y. Since (X, ∗) is a group, we obtain x = e. It follows
that F (x)•F (y) = F (e)•F (y) = ê•F (y) = F (y), proving that F (x)βF (y). �

A groupoid (X, ∗) is said to be β-linear selective if for all x, y ∈ X , xβy or
yβx. Let (X, ∗) be a selective groupoid, i.e., x ∗ y ∈ {x, y} for all x, y ∈ X . If
we assume x ∗ y = y ∗ x for all x, y ∈ X , then it is β-linear selective.

A groupoid mapping F : (X, ∗) → (Y, •) is said to be α-order-preserving if
xαy implies F (x)αF (y), i.e., x ∗ y = x implies F (x) • F (y) = F (x).

Proposition 6.7. Every groupoid homomorphism F : (X, ∗) → (Y, •) is α-

order-preserving.

Proof. The proof is similar to the proof of Proposition 6.1, and we omit it. �

Note that, by Propositions 6.1 and 6.7, every groupoid homomorphism is
both α-order-preserving and β-order-preserving. We obtain the exact analog
of Proposition 6.6 for α-order-preserving mappings.

Proposition 6.6′. Let (X, ∗) be a group with identity e and let (Y, •) be a

group with identity ê. If F : (X, ∗)→ (Y, •) is a map such that F (e) = ê (not
necessarily a group homomorphism), then F is α-order-preserving.

Note that such a mapping F : (X, ∗) → (Y, •) discussed in Propositions
6.6 and 6.6′ is both a β-order-preserving and an α-order-preserving mapping
without being a group homomorphism necessarily.

Given a groupoid (X, ∗), consider [β] := {(x, y) ∈ X × X |xβy} and the
subset [β]∗ := {x ∈ X | ∃ y ∈ X such that xβy}. If a groupoid (X, ∗) has the
property (P ), then X = [β]∗ and [β] = ∪x∈X [β]x. The set [β] acts as a natural
set of edges (x ∗ y = y corresponds to x→ y in digraphs).

A groupoid (X, ∗) is said to be medial if (x ∗ u) ∗ (y ∗ v) = (x ∗ y) ∗ (u ∗ v) for
all x, y, u, v ∈ X . It is known that every p-semisimple BCI-algebra is medial
([16, p. 42]).

Proposition 6.8. If (X, ∗) is a medial groupoid, then [β]∗ is a subgroupoid of

(X, ∗).
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Proof. If x, y ∈ [β]∗, then there exist u, v ∈ X such that xβu, yβv. It follows
that x ∗ u = u, y ∗ v = v. Since (X, ∗) is medial, we have (x ∗ y) ∗ (u ∗ v) =
(x ∗ u) ∗ (y ∗ v) = u ∗ v, proving that x ∗ y ∈ [β]∗. �

A groupoid (X, ∗) is said to be β-medial if ([β]∗, ∗) is a subgroupoid of (X, ∗).

Example 6.9. Let (X, ∗) be a group and let x ∈ [β]∗. Then there exists y ∈ X

such that xβy. It follows that x ∗ y = y, which shows that x = e, an identity.
Hence [β]∗ = {e} is a subgroupoid of (X, ∗). Hence every group is β-medial.

Note that non-abelian group is β-medial, but not medial. In fact, assume
that (X, ∗) is a group and medial. Then, for all x, y ∈ X , x∗y = (e∗x)∗(y∗e) =
(e ∗ y) ∗ (x ∗ e) = y ∗ x. Hence (X, ∗) is abelian.

Given a groupoid (X, ∗), consider [α] := {(x, y) ∈ X × X |xαy} and the
subset [α]∗ := {x ∈ X | ∃ y ∈ X such that xαy}.

Proposition 6.10. If (X, ∗) is a medial groupoid, then [α]∗ is a subgroupoid

of (X, ∗).

Proof. If x, y ∈ [β]∗, then there exist u, v ∈ X such that xαu, yαv. It follows
that x ∗ u = x, y ∗ v = y. Since (X, ∗) is medial, we have (x ∗ y) ∗ (u ∗ v) =
(x ∗ u) ∗ (y ∗ v) = x ∗ y, proving that x ∗ y ∈ [α]∗. �

A groupoid (X, ∗) is said to be α-medial if ([α]∗, ∗) is a subgroupoid of (X, ∗).
By Propositions 6.8 and 6.10, every medial groupoid is both β-medial and

α-medial.
Note that the converse of Propositions 6.8 and 6.10 need not be true in

general. In fact, in the groupoid (X, ∗1) of Example 4.7, we can see that
[α]∗ = [β]∗ = X , a subgroupoid of itself, but it is not medial, since (a ∗1 e) ∗1
(c ∗1 e) = a ∗1 b = b, (a ∗1 c) ∗1 (e ∗1 e) = e ∗1 e = e.

Example 6.11. Let (X, ∗) be a group. If x ∈ X , then x ∗ e = x, i.e., xαe.
Hence x ∈ [α]∗, proving that [α]∗ = X is a subgroupoid of (X, ∗). Hence every
group is α-medial.

By Examples 6.9 and 6.11, we conclude that every group is both β-medial
and α-medial. It is easy to see that every non-abelian group is α-medial, but
not medial.

7. Conclusion

In this paper we have addressed the question whether it is possible to con-
struct a notion of order(≤) which is natural for arbitrary groupoids. Given the
great generality needed in order to succeed in doing so, we have dispensed with
transitivity as a fundamental idea in this setting, even though we have certainly
considered it an important idea in this paper as well as elsewhere. As a conse-
quence we were encouraged to consider the notion of below (smaller, weaker,
. . .) and above (larger, stronger, . . .) as basic. Experience with examples in the
real world, such as in children’s games (rock, scissors, paper) indicating that
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above and below are not identical in their implication as opposites. Accepting
this fact, we used a graph-theoretical analogue for directed graphs as translated
to selective groupoids to define relations β(below) and α(above), whence the
relation ≤ becomes α ∩ β in a natural way. Testing the usefulness of this idea,
we discover that in the semigroup (Bin(X),✷) the identity element (i.e., the
left-zero semigroup) is a unique least element in the ≤-relation. Other exam-
ples also correspond well to intuitive ideas of what should be the meaning of
these terms.

We make no claims to the uniqueness of these notions. In fact, in many
areas, e.g., in the study of BCK-algebras there are competing notions (x ≤ y

if and only if x ∗ y = 0) which have been in use for a considerable amount of
time and which are accepted in the literature.

If we define a “new” operation x ∧ y = x ∗ (x ∗ y) on the BCK-algebra
(X, ∗, 0), as is commonly done, then x ∗ y = 0 implies x ∧ y = x ∗ 0 = x,
i.e., xαy in (X,∧, 0), so that these distinct operations are in fact quite close.
Therefore, because of these considerations, we offer these ideas on order as
suggestions for their use in the development of a general theory of groupoids
Bin(X) for sets X , as a natural approach to the subject.

Acknowledgement. Authors are very grateful for referee’s valuable sugges-
tions and help.
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