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TRANSLATION SURFACES IN THE 3-DIMENSIONAL

GALILEAN SPACE SATISFYING ∆II
xi = λixi

Ali Çakmak, Murat Kemal Karacan, Sezai Kiziltug, and Dae Won Yoon

Abstract. In this paper, we classify translation surfaces in the three di-
mensional Galilean space G3 satisfying some algebraic equations in terms
of the coordinate functions and the Laplacian operators with respect to
the second fundamental form of the surface. We also give explicit forms
of these surfaces.

1. Introduction

Let x : M →E
m be an isometric immersion of a connected n-dimensional

manifold in the m-dimensional Euclidean space E
m. Denote by H and ∆ the

mean curvature and the Laplacian of M with respect to the Riemannian metric
on M induced from that of Em, respectively. Takahashi ([14]) proved that the
submanifolds in E

m satisfying ∆x = λx, that is, all coordinate functions are
eigenfunctions of the Laplacian with the same eigenvalue λ ∈ R, are either the
minimal submanifolds of Em or the minimal submanifolds of hypersphere Sm−1

in E
m.

As an extension of Takahashi theorem, in [9] Garay studied hypersurfaces
in E

m whose coordinate functions are eigenfunctions of the Laplacian, but not
necessarily associated to the same eigenvalue. He considered hypersurfaces in
E
m satisfying the condition

(1.1) ∆x = Ax,

where A ∈ Mat(m,R) is an m × m-diagonal matrix, and proved that such
hypersurfaces are minimal (H = 0) in E

m and open pieces of either round
hyperspheres or generalized right spherical cylinders.
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Related to this, Dillen, Pas and Verstraelen ([7]) investigated surfaces in E
3

whose immersions satisfy the condition

(1.2) ∆x = Ax+B,

where A ∈ Mat(3,R) is a 3 × 3-real matrix and B ∈ R
3. In other words, each

coordinate function is of 1-type in the sense of Chen ([4]). For the Lorentzian
version of surfaces satisfying (1.2), Alias, Ferrandez and Lucas ([1]) proved that
the only such surfaces are minimal surfaces and open pieces of Lorentz circular
cylinders, hyperbolic cylinders, Lorentz hyperbolic cylinders, hyperbolic spaces
or pseudo-spheres.

The notion of an isometric immersion x is naturally extended to smooth
functions on submanifolds of Euclidean space or pseudo-Euclidean space. The
most natural one of them is the Gauss map of the submanifold. In particular,
if the submanifold is a hypersurface, the Gauss map can be identified with the
unit normal vector field to it. Dillen, Pas and Verstraelen ([8]) studied surfaces
of revolution in the three dimensional Euclidean space E

3 such that its Gauss
map G satisfies the condition

(1.3) ∆G = AG,

where A ∈ Mat(3,R). Baikoussis and Verstraelen ([2]) studied the helicoidal
surfaces in E

3. Choi ([5]) completely classified the surfaces of revolution sat-
isfying the condition (1.3) in the three dimensional Minkowski space E

3
1. The

authors ([5, 16]) classified surfaces of revolution satisfying (1.2) and (1.3) in the
three dimensional Minkowski space and pseudo-Galilean space. Yoon ([15])
classified the translation surfaces in the 3-dimensional Galilean space under
the condition ∆xi = λixi,where λi ∈ R. The authors ([3, 10]) classified trans-
lation surfaces and surfaces of revolution satisfying ∆IIIri = µiri in the 3-
dimensional space. Karacan, Yoon and Bukcu ([11]) classified translation sur-
faces of Type 1 satisfying ∆Jxi = λixi, j = 1, 2 and ∆IIIxi = λixi. Sipus and
Divjak ([13]) described translation surfaces in the Galilean space having con-
stant Gaussian and mean curvatures as well as translation Weingarten surfaces.
The main purpose of this paper is to complete classification of translation sur-
faces in the three dimensional Galilean space G3 in terms of the position vector
field and the Laplacian operator.

2. Preliminaries

The Galilean space G3 is a Cayley-Klein space defined from a 3-dimensional
projective space P(R3) with the absolute figure that consists of an ordered
triple {w, f, I}, where w is the ideal (absolute) plane, f the line (absolute
line) in w and I the fixed elliptic involution of points of f . We introduce
homogeneous coordinates in G3 in such a way that the absolute plane w is
given by x0 = 0, the absolute line f by x0 = x1 = 0 and the elliptic in-
volution by (0 : 0 : x2 : x3) → (0 : 0 : x3 : −x2). In affine coordinates defined
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by (0 : x1 : x2 : x3) → (1 : x : y : z), distance between points Pi = (xi, yi, zi),
i = 1, 2, is defined by

(2.1) d (P1, P2) =

{

|x2 − x1| , if x1 6= x2
√

(y2 − y1)
2
+ (z2 − z1)

2
, if x1 = x2.

The group of motions of G3 is a six-parameter group given (in affine coordi-
nates) by

x = a+ x,

y = b + cx+ y cos θ + z sin θ,

z = d+ ex− y sin θ + z cos θ.

With respect to the absolute figure, there are two types of lines in the Galilean
space − isotropic lines which intersect the absolute line f and nonisotropic
lines which do not. A plane is called Euclidean if it contains f , otherwise it
is called isotropic. In the given affine coordinates, isotropic vectors are of the
form (0, y, z), whereas Euclidean planes are of the form x = k, k ∈ R. The
induced geometry of a Euclidean plane is Euclidean and of an isotropic plane
isotropic (i.e., 2-dimensional Galilean or flag-geometry).

A Cr-surface S, r ≥ 1, immersed in the Galilean space, x : U → S, U ⊂ R
2,

x(u, v) = (x(u, v), y(u, v), z(u, v)), has the following first fundamental form

I = (g1du+ g2dv)
2
+ ǫ
(

h11du
2 + 2h12dudv + h22dv

2
)

,

where the symbols gi = xi, hij =
∼

xi.
∼

xj stand for derivatives of the first coordi-
nate function x(u, v) with respect to u, v and for the Euclidean scalar product of

the projections
∼

xk of vectors xk onto the yz-plane, respectively. Furthermore,

ǫ =

{

0 , if direction du : dv is non-isotropic,
1 , if direction du : dv is isotropic.

In every point of a surface there exists a unique isotropic direction defined by
g1du+ g2dv = 0. In that direction, the arc length is measured by

ds2 = h11du
2 + 2h12dudv + h22dv

2

=
h11g

2
2 − 2h12g1g2 + h22g

2
1

g21

=
W 2

g21
dv2,

where g1 6= 0.
A surface is called admissible if it has no Euclidean tangent planes. There-

fore, for an admissible surface either g1 6= 0 or g2 6= 0 holds. An admissible
surface can always locally be expressed as

z = f(u, v).
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The Gaussian K and mean curvature H are Cr−2 functions, r ≥ 2, defined by

K =
LN −M2

W 2
, H =

g22L− 2g1g2M + g21N

2W 2
,

where

Lij =
x1xij − xijx1

x1
·N, x1 = g1 6= 0.

We will use Lij , i, j = 1, 2, for L, M, N if more convenient. The vector N

defines a normal vector to a surface

N =
1

W
(0,−x2z1 + x1z2, x2y1 − x1y2) ,

where W 2 = (x2x1 − x1x2)
2 ([13]).

It is well known in terms of local coordinates {u, v} of M the Laplacian
operator ∆II the second fundamental form on M are defined by ([11, 12])

(2.2) ∆IIx = − 1√
|LN−M2|

[

∂
∂u

(

Nxu−Mxv√
|LN−M2|

)

− ∂
∂v

(

Mxu−Lxv√
|LN−M2|

)]

.

3. Translation surfaces in G3

For counter parts of Euclidean results, we will consider translation surfaces
that are obtained by translating two planar curves. In order to obtain an
admissible surface, translated curves can be, with respect to the absolute figure,
either

Type 1: a non-isotropic curve (having its tangents non-isotropic) and an
isotropic curve or,

Type 2: non-isotropic curves.
There are no motions of the Galilean space that carry one type of a curve

into another, so we will treat them separately. Translation surfaces of the Type
1 in the Galilean space can be locally represented by

z = f(u) + g(v),

which yields the parametrization

(3.1) x(u, v) = (u, v, f(u) + g(v)) .

One translated curve is a non-isotropic curve in the plane y = 0

α(u) = (u, 0, f(u))

and the other is an isotropic curve in the plane x = 0

β(v) = (0, v, g(v)).

Translation surfaces of the Type 2 in the Galilean space G3, a surface having
both translated curves non-isotropic

(3.2) x(u, v) = (u+ v, g(v), f(u)) ,

where α(u) = (u, 0, f(u)) is a curve in the isotropic plane y = 0, and β(v) =
(v, g(v), 0) is a curve in the isotropic plane z = 0 ([13]).
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In this paper, we will investigate the translation surfaces of Type 1 and Type
2 in the three dimensional Galilean space G3.

4. Translation surfaces of type 1 satisfying ∆IIxi = λixi

In this section, we classify translation surfaces with non-degenerate second
fundamental form in G3 satisfying the equation

(4.1) ∆IIxi= λixi,

where λi∈R, i=1, 2, 3 and

∆IIx =
(

∆IIx1,∆
IIx2,∆

IIx3

)

,

where

x1 = u, x2 = v, x3 = f(u) + g(v).

For the translation surface given by (3.1), the coefficients of the second funda-
mental form are given by

(4.2) L11 = L = −
f ′′

√

(

1 + g′
2
)

, L22 = N = −
g′′

√

(

1 + g′
2
)

, L12 = M = 0.

The Gaussian curvature K is

K =
f ′′(u)g′′(v)
(

1 + g′
2
)2 .

Suppose that the surface has non zero Gaussian curvature, so

f ′′(u)g′′(v) 6= 0, ∀ u, v ∈ I.

By a straightforward computation, the Laplacian operator on M with the help
of (4.2) and (2.2) turns out to be

(4.3) ∆IIx =













√
1+g′2 f ′′′

2f ′′2
,

√
1+g′2 g′′′

2g′′2
,

√
1+g′2

2f ′′2g′′2

(

−4f ′′
2

g′′
2

+ f ′g′′
2

f ′′′ + g′f ′′
2

g′′′
)













.

The equation (4.1) by means of (4.2) gives rise to the following system of
ordinary differential equations

(4.4)

√

1 + g′
2

f ′′′

2f ′′2
= λ1u,

(4.5)

√

1 + g′
2

g′′′

2g′′2
= λ2v,

(4.6)

√

1 + g′
2

2f ′′2g′′
2

(

−4f ′′
2

g′′
2

+ f ′g′′
2

f ′′′ + g′f ′′
2

g′′′
)

= λ3 (f(u) + g(v)) ,
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where λi ∈ R. This means that M is at most of 3- types. Combining equations
(4.4), (4.5) and (4.6), we have

(4.7) f ′λ1u− λ3f = −g′λ2v + λ3g + 2
√

1 + g′
2

.

We discuss six cases according to constants λ1, λ2, λ3.

Case 1: Let λ1 = 0, λ2 6= 0, λ3 6= 0, from (4.7), we obtain

(4.8) −λ3f = −g′λ2v + λ3g + 2
√

1 + g′
2

.

Here u and v are independent variables, so each side of (4.8) is equal to a
constant, call it p. Hence, the two equations

(4.9) −λ3f = p = −g′λ2v + λ3g + 2
√

1 + g′
2

.

This differential equation for the function f(u) admits the solution

(4.10) f(u) = −
p

λ3
,

where for some constants p 6= 0 and λ3 6= 0. But, there is no suitable solution
for the function g(v). In particular, if p = 0, then we have

(4.11) f(u) = 0,

there is no suitable solution for the function g(v).
Case 2: Let λ1 = λ2 = 0, λ3 6= 0, from (4.7), we obtain

(4.12) −λ3f = λ3g + 2
√

1 + g′
2

.

This differential equation admits the solutions

(4.13)

f(u) = −
p

λ3
,

g(v) =
4e

λ3v

2
−λ3c1 + e−

λ3v

2
+λ3c1 + 2p

2λ3
,

g(v) =
4e−

λ3v

2
−λ3c1 + e

λ3v

2
+λ3c1 + 2p

2λ3
,

where c1, p ∈ R with λ3 6= 0. In this case, M is parametrized by

(4.14)

x(u, v) =

(

u, v,

(

−
p

λ3

)

+

(

4e
λ3v

2
−λ3c1 + e−

λ3v

2
+λ3c1 + 2p

2λ3

))

,

x(u, v) =

(

u, v,

(

−
p

λ3

)

+

(

4e−
λ3v

2
−λ3c1 + e

λ3v

2
+λ3c1 + 2p

2λ3

))

.
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In particular, if p = 0, then we have

(4.15)

f(u) = 0,

g(v) =
e−

λ3v

2
−λ3c1

(

eλ3v+2c1λ3 + 4λ2
3

)

2λ2
3

,

g(v) =
e−

λ3v

2
−λ3c1

(

e2λ3c1 + 4eλ3vλ2
3

)

2λ2
3

,

where c1, p ∈ R with λ3 6= 0. In this case, M is parametrized by

(4.16)

x(u, v) =

(

u, v,
e
−

λ3v

2
−λ3c1(eλ3v+2c1λ3+4λ2

3)
2λ2

3

)

,

x(u, v) =

(

u, v,
e
−

λ3v

2
−λ3c1(e2λ3c1+4eλ3vλ2

3)
2λ2

3

)

.

Case 3: Let λ1 6= 0, λ2 = 0, λ3 = 0, from (4.7), we obtain

(4.17) f ′λ1u = 2
√

1 + g′
2

.

This differential equation admits the solutions

(4.18)

f(u) = c1 +
p lnu

λ1
,

g(v) = ±
v
√

p2 − 4

2
+ c2,

where c1, c2, p ∈ R with p2 − 4 > 0. In this case, M is parametrized by

(4.19) x(u, v) =

(

u, v,

(

c1 +
p lnu

λ1

)

+

(

±
v
√

p2 − 4

2
+ c2

))

.

In particular, if p = 0, then we have

(4.20) f(u) = c1.

But, there is no suitable solution for the function g(v).
Case 4: Let λ1 = 0, λ2 6= 0, λ3 = 0, from (4.7), we obtain

(4.21) −g′λ2v + 2
√

1 + g′
2 = 0.

This differential equation admits the solution

(4.22) g(v) = c1 ±
2 ln

(

λ2
2v + λ2

√

λ2
2v

2 − 4
)

2λ2
,

where for some constant c1 ∈ R with λ2
2v

2 − p2 > 0. Here, the function f(u)
independent of selection of the function g(v). In this case, M is parametrized
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by

(4.23) x(u, v) =



u, v, f(u) + c1 ±
2 ln

(

λ2
2v + λ2

√

λ2
2v

2 − 4
)

2λ2



 ,

where f ′′ 6= 0.
Case 5: Let λ1 = λ2 = λ3 = 0, from (4.7), we obtain

(4.24) 0 = 2
√

1 + g′
2

.

There is no suitable solutions. Here, the function f(u) independent of selection
of the function g(v).

Case 6: Let λ1 6= 0, λ2 6= 0, λ3 = 0, from (4.7), we obtain

(4.25) f ′λ1u = −g′λ2v + 2
√

1 + g′
2

.

Their general solutions are

(4.26)































f(u) = c1 +
p lnu
λ1

,

g(v) = c2 ∓
p ln(2−λ2v)

2λ2

± p ln(2+λ2v)
2λ2

+
p ln(4−λ2

2
v2)

2λ2

∓
2 ln

(
λ2v+

√
−4+p2+λ2

2
v2

)

λ2

±
p ln

(
4−p2

−2λ2v−p
√

−4+p2+λ2

2
v2

)

2λ2

∓
p ln

(
4−p2+2λ2v−p

√
−4+p2+λ2

2
v2

)

2λ2

,

where c1, c2, p ∈ R. In this case, M is parametrized by

(4.27) x(u, v) =

































u,

v,
(

c1 +
p lnu

λ1

)

+



















c2 ∓
p ln(2−λ2v)

2λ2

± p ln(2+λ2v)
2λ2

+
p ln(4−λ2

2
v2)

2λ2

∓
2 ln

(
λ2v+

√
−4+p2+λ2

2
v2

)

λ2

±
p ln

(
4−p2

−2λ2v−p
√

−4+p2+λ2

2
v2

)

2λ2

∓
p ln

(
4−p2+2λ2v−p

√
−4+p2+λ2

2
v2

)

2λ2



















































.

In particular, if p = 0, then we have

(4.28)

f(u) = c1,

g(v) = c2 ±
2 ln

(

λ2
2v + λ2

√

−4 + λ2
2v

2
)

2λ2
,

where c1, c2 ∈ R. In this case, M is parametrized by

(4.29) x(u, v) =



u, v, (c1) +



c2 ±
2 ln

(

λ2
2v + λ2

√

−4 + λ2
2v

2
)

2λ2







 .
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Using the solutions (4.10), (4.11), (4.13), (4.15), (4.18), (4.20) and (4.28)
give rise a contradiction with our assumption saying that the solution must be
non-degenerate second fundamental form.

Definition. A surface of in the three dimensional Galilean space is said to be
II-harmonic if it satisfies the condition ∆IIx = 0.

Theorem 4.1. Let M be a translation surface given by (3.1) in the three

dimensional Galilean space G3. Then there is no II-harmonic the surface M.

Theorem 4.2. Let M be a non II-harmonic translation surface with non-

degenerate second fundamental form given by (3.1) in the three dimensional

Galilean space G3. If the surface M satisfies the condition ∆IIxi=λixi, where

λi∈R, i=1, 2, 3, then it is congruent to an open part of the surfaces (4.23) and
(4.27).

5. Translation surfaces of type 2 satisfying ∆IIxi = λixi

In this section, we classify translation surfaces with non-degenerate second
fundamental form in G3 satisfying the equation

(5.1) ∆IIxi= λixi,

where λi∈R, i=1, 2, 3 and

∆IIx =
(

∆IIx1, ∆
IIx2, ∆

IIx3

)

,

where

x1 = u+ v, x2 = g(v), x3 = f(u).

For the translation surface given by (3.2), the coefficient of the second funda-
mental form is given by

(5.2) L11 = L =
f ′′g′

√

f ′2 + g′
2
, L22 = N =

f ′g′′
√

f ′2 + g′
2
, L12 = M = 0.

The Gaussian curvature K is

K =
f ′f ′′g′g′′

(

f ′2 + g′
2
)2 .

Suppose that the surface has non zero Gaussian curvature, so

f ′(u)f ′′(u)g′(v)g′′(v) 6= 0, ∀ u, v ∈ I.

By a straightforward computation, the Laplacian operator on M with the help
of (5.2) and (2.2) turns out to be

(5.3) ∆IIx =













√
f ′2+g′2

2f ′g′f ′′2g′′2

(

−2f ′′
2

g′′
2

+ f ′g′′
2

f ′′′ + g′f ′′
2

g′′′
)

,
√

f ′2+g′2

2f ′g′′2

(

−3g′′
2

+ g′g′′′
)

,
√

f ′2+g′2

2g′f ′′2

(

−3f ′′
2

+ f ′f ′′′

)













.
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The equation (5.1) by means of (5.2) gives rise to the following system of
ordinary differential equations

(5.4)

√

f ′2 + g′
2

2f ′g′f ′′2g′′
2

(

−2f ′′
2

g′′
2

+ f ′g′′
2

f ′′′ + g′f ′′
2

g′′′
)

= λ1 (u+ v) ,

(5.5)

√

f ′2 + g′
2

2f ′g′′
2

(

−3g′′
2

+ g′g′′′
)

= λ2g(v),

(5.6)

√

f ′2 + g′
2

2g′f ′′2

(

−3f ′′
2

+ f ′f ′′′

)

= λ3f(u),

where λi ∈ R. This means that M is at most of 3-types. Combining equations
(5.4), (5.5) and (5.6), we have

(5.7)
2
√

f ′2 + g′
2

f ′g′
+ λ3

f

f ′
+ λ2

g

g′
= λ1u+ λ1v.

We discuss six cases according to constants λ1, λ2, λ3.

Case 1: Let λ1 = 0, λ2 6= 0, λ3 6= 0, from (5.7), we obtain

(5.8)
2
√

f ′2 + g′
2

f ′g′
+ λ3

f

f ′
+ λ2

g

g′
= 0.

There is no suitable solutions. Based on the selection of the function f(u), it
is possible to obtain other form of the function g(v).

Case 2: Let λ1 = λ2 = 0, λ3 6= 0, from (5.7), we obtain

(5.9)
2
√

f ′2 + g′
2

f ′g′
+ λ3

f

f ′
= 0.

This differential equation admits the solution

(5.10) f(u) = c1u+ c2,g(v) = c3 ±
2c1v

√

−4 + c2λ
2
3u+ c21λ

2
3u

2
,

where ci ∈ R with λ3 6= 0. In this case, M is parametrized by

(5.11) x(u, v) =

(

u+ v,

(

c3 ±
2c1v

√

−4 + c2λ
2
3u+ c21λ

2
3u

2

)

, (c1u+ c2)

)

.

Based on the selection of the function f(u), it is possible to obtain other form
of the function g(v).

Case 3: Let λ1 6= 0, λ2 = 0, λ3 = 0, from (5.7), we obtain

(5.12)
2
√

f ′2 + g′
2

f ′g′
= λ1u+ λ1v.
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This differential equation admits the solution

(5.13)

f(u) = c1u+ c2,

g(v) = c3 ±
2 ln

(

c24λ
2
1(u+ v) + c4λ1

√

−4 + c24λ
2
1(u + v)2

)

λ1
,

where ci ∈ R . In this case, M is parametrized by

(5.14) x(u, v) =









u+ v,
(

c3 ±
2 ln

(
c2
4
λ2

1
(u+v)+c4λ1

√
−4+c2

4
λ2

1
(u+v)2

)

λ1

)

,

(c1u+ c2)









.

Based on the selection of the function f(u), it is possible to obtain other form of
the function g(v). For example, if we choose f = eu, (5.12) admits the solution

(5.15)

f(u) = eu,

g(v) = c1 ±
2 ln

(

λ1e
u
(

λ1e
u (u+ v) +

√

−4 + λ2
1e

2u(u+ v)2
))

λ1
,

where c1 ∈ R . In this case, M is parametrized by

(5.16) x(u, v) =









u+ v,
(

c1 ±
2 ln

(
λ1e

u
(
λ1e

u(u+v)+
√

−4+λ2

1
e2u(u+v)2

))

λ1

)

,

eu









.

Case 4: Let λ1 = 0, λ2 6= 0, λ3 = 0, from (5.7), we obtain

(5.17)
2
√

f ′2 + g′
2

f ′g′
+ λ2

g

g′
= 0.

This differential equation admits the solution

(5.18)

f(u) = c1u+ c2,

g(v) =
e−

1

2
c1λ2v−c3λ2

(

4λ2
2e

c1λ2v + e2c3λ2

)

2λ2
2

,

g(v) =
e−

1

2
c1λ2v−c3λ2

(

4λ2
2 + ec1λ2v+2c3λ2

)

2λ2
2

,

where ci ∈ R . In this case, M is parametrized by

(5.19)
x(u, v) =

(

u+ v,

(

e
−

1

2
c1λ2v−c3λ2(4λ2

2
ec1λ2v+e2c3λ2)

2λ2

2

)

, (c1u+ c2)

)

,

x(u, v) =

(

u+ v,

(

e
−

1

2
c1λ2v−c3λ2(4λ2

2
+ec1λ2v+2c3λ2)

2λ2

2

)

, (c1u+ c2)

)

.

Based on the selection of the function f(u), it is possible to obtain other
form of the function g(v). For example, if we choose f = eu, (5.17) admits the
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solution

(5.20)

f(u) = eu,

g(v) =
e−

1

2
euλ2v−c1λ2

(

4λ2
2e

euλ2v + e2c1λ2

)

2λ2
2

,

g(v) =
e−

1

2
euλ2v−c1λ2

(

4λ2
2 + ee

uλ2v+2c1λ2

)

2λ2
2

,

where c1 ∈ R . In this case, M is parametrized by

(5.21)

x(u, v) =

(

u+ v,

(

e−
1

2
euλ2v−c1λ2

(

4λ2
2e

euλ2v + e2c1λ2

)

2λ2
2

)

, eu

)

,

x(u, v) =

(

u+ v,

(

e−
1

2
euλ2v−c1λ2

(

4λ2
2 + ee

uλ2v+2c1λ2

)

2λ2
2

)

, eu

)

.

Case 5: Let λ1 = λ2 = λ3 = 0, from (5.7), we obtain

(5.22)
2
√

f ′2 + g′
2

f ′g′
= 0.

There is no suitable solutions.
Case 6: Let λ1 6= 0, λ2 6= 0, λ3 = 0, from (4.7), we obtain

(5.23)
2
√

f ′2 + g′
2

f ′g′
+ λ2

g

g′
= λ1u+ λ1v.

There is no suitable solutions. Based on the selection of the function f(u), it
is possible to obtain other form of the function g(v).

Using the solutions (5.10), (5.11), (5.13) and (5.18) give rise a contradiction
with our assumption saying that the solution must be non-degenerate second
fundamental form.

Definition. A surface of in the three dimensional Galilean space is said to be
II−harmonic if it satisfies the condition ∆IIx = 0.

Theorem 5.1. Let M be a translation surface given by (3.2) in the three

dimensional Galilean space G3. Then there is no II-harmonic the surface M.

Theorem 5.2. Let M be a non II-harmonic translation surface with non-

degenerate second fundamental form given by (3.2) in the three dimensional

Galilean space G3. If the surface M satisfies the condition ∆IIxi=λixi, where

λi∈R, i=1, 2, 3, then it is congruent to an open part of the surfaces (5.16) and
(5.21).
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