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REDUCING SUBSPACES FOR A CLASS OF

TOEPLITZ OPERATORS ON WEIGHTED

HARDY SPACES OVER BIDISK

Shuhei Kuwahara

Abstract. We consider weighted Hardy spaces on bidisk D
2 which gen-

eralize the weighted Bergman spaces A2
α(D

2). Let z,w be coordinate
functions and TzNw Toeplitz operator with symbol zNw. In this paper,
we study the reducing subspaces of TzNw on the weighted Hardy spaces.

1. Introduction

Let X be a closed subspace in a Hilbert space. Then X is an invariant
subspace of an operator A if AX ⊂ X . In addition, X is a reducing subspace
of an operator A if X is an invariant subspace of both A and its adjoint A∗.
The reducing subspace X is called minimal if {0} and X are the only reducing
subspaces contained in X .

Many mathematicians study the reducing subspaces of operators on Hilbert
spaces. For instance, M. Albaseer, Y. Lu and Y. Shi [1] determined the reducing
subspaces of Toeplitz operator TzNwM on the Bergman space A2(D2), where
N and M are positive integers. In this paper, we will study the reducing
subspaces of the operator TzNw on weighted Hardy spaces over bidisk. The
weighted Hardy spaces over bidisk is a generalization of the weighted Bergman
space A2

α(D
2). The definitions and notations in this paper are as follows.

Let D be the unit disk in the complex plane C. For j = 1, 2, let dµj =

dσj(r)dθj/2π be the probably measures on the unit disk D. We consider
weighted Hardy space H2(D2, dµ) which is the closure of all analytic poly-
nomials in L2(D2, dµ), where dµ(z, w) = dµ1(z)dµ2(w). Here L

2(D2, dµ) is the
Hilbert space of square integrable functions on D

2 with the inner product

〈f, g〉 =

∫

D2

f(z, w)g(z, w)dµ1(z)dµ2(w).
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If dµ1(z) = dµ2(z) = (α + 1)(1 − |z|2)αdA(z) where α > −1 and dA is the
normalized area measure on D, then the weighted Hardy space H2(D2, dµ1dµ2)
is the weighted Bergman space A2

α(D
2) over bidisk D

2.
Next we will introduce notions of weight sequences. Put

ω1(n) =

∫

D

|z|2ndµ1(z), ω2(n) =

∫

D

|w|2ndµ2(w).

Throughout this paper, we assume that

sup
n

ω1(n+ 1)

ω1(n)
< ∞ and sup

n

ω2(n+ 1)

ω2(n)
< ∞

so that the multiplication operators defined by z and w are bounded. Let P be
the orthogonal projection from L2(D2, dµ) onto H2(D2, dµ). For ϕ in L∞, put

Tϕf = P (ϕf) (f ∈ H2(D2, dµ))

and then Tϕ is called a Toeplitz operator. By calculation we have the following
lemma.

Lemma 1.1. Let N1 and N2 be natural numbers. The following equalities hold:

TzN1wN2 (z
kwl) =

{

ω1(k)
ω1(k−N1)

zk−N1wl+N2 (k ≥ N1)

0 (k < N1)

and

T ∗

zN1wN2
(zkwl) =

{

ω2(l)
ω2(l−N2)

zk+N1wl−N2 (l ≥ N2)

0 (l < N2)

for nonnegative integers k, l.

From Lemma 1.1, we show an example of the reducing subspaces of TzNw.

Proposition 1.2. Let I0 = {(n, 0); 0 ≤ n < N} as a subset of multi-indices.

A subspace

X0 = Span{zn; (n, 0) ∈ I0}

is contained in the kernel of TzNw and T ∗

zNw
. Moreover X0 is the reducing

subspace of TzNw, where we denote by Span X the closed linear span of a

subset X in H2(D2, dµ).

In this paper, we study the reducing subspaces contained in X⊥

0 . Fix a
natural number N . Our main theorems are as follows. For the definition of
transparent polynomials, see Section 2.

Theorem 1.3. Let X ⊂ X⊥

0 be a reducing subspace of TzNw on H2(D2, dµ).
Then the reducing subspace X contains the minimal reducing subspace Xp where

p is a transparent polynomial. Moreover X is the minimal reducing subspace of

TzNw if and only if there exists a transparent polynomial p such that X = Xp.
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In Section 2, we will prepare for considering the reducing subspaces of the
operator TzNw contained in X⊥

0 . We note that the statements in Section 2 is
valid even if N = 1. In Section 3, we will state our main theorem and study
examples of the reducing subspaces on concrete function spaces. In this paper,
we use the technique in [4, 5, 7] with the similar way.

2. Preliminaries

Let I be a subset of multi-indices such that I = {(n, 0);n ≥ N}. We put the
order on the set I induced by the set of nonnegative integers; (m, 0) < (n, 0) if
m < n.

We say that (m, 0) ∈ I and (n, 0) ∈ I are equivalent if

ω1(m)

ω1(m− lN)
=

ω1(n)

ω1(n− lN)

for all l satisfying 0 < lN ≤ m, 0 < lN ≤ n. In this case, we write (m, 0) ∼
(n, 0).

For a natural number k, let Ik be a subset of I such that

Ik = {(n, 0); kN ≤ n ≤ (k + 1)N − 1}.

If a polynomial p(z) is in a form of

p(z) =
∑

(n,0)∈Ik

bnz
n,

then we say that p is a transparent polynomial when we have α ∼ β for any
two nonzero coefficient bα, bβ of p.

We partition the set Ik into equivalent classes and sort them in the or-
der of the minimal multi-index. We denote the sorted equivalent classes by
Ω1,Ω2, . . . ,ΩÑ with Ñ ≤ N .

For a function p(z) =
∑

(n,0)∈Ik
anz

n, the decomposition

p(z) =
∑

m

pm(z)

is called the canonical decomposition of p, where

pm(z) =
∑

(n,0)∈Ωm

anz
n.

We note that each gi is orthogonal to gj if i 6= j.
Let S be the vector space consisting of all finite linear combinations of finite

products of the operators TzNw and its adjoint T ∗

zNw
. For any f ∈ H2(D2, dµ),

we put Sf = {Tf ;T ∈ S}. Denote the closure of Sf in H2(D2, dµ) by Xf

which we call the reducing subspace generated by f . It is easy to see that Xf

is the smallest reducing subspace containing f . Lemma 2.1 shows the relation
between reducing subspaces and transparent polynomials.
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Lemma 2.1. If

p(z, w) =
∑

(n,0)∈Ik

bnz
n

is a transparent polynomial, then

Xp = Span{
∑

(n,0)∈Ik

bnz
n−lNwl; 0 ≤ l ≤ k}.

Proof. Let

X = Span{
∑

(n,0)∈Ik

bnz
n−lNwl; 0 ≤ l ≤ k}.

It is obvious that p ∈ X ⊂ Xp. From the definition of Xp, it is enough to show
that X is a reducing subspace of TzNw. Let (M, 0) be the minimal multi-index
of nonzero coefficients of p. For 0 ≤ l < k, we compute

TzNw

∑

(n,0)∈Ik

bnz
n−lNwl

=
∑

(n,0)∈Ik

bn
ω1(n− lN)

ω1(n− (l + 1)N)
zn−(l+1)Nwl+1

=
∑

(n,0)∈Ik

bn
ω1(M − lN)

ω1(M − (l + 1)N)
zn−(l+1)Nwl+1

=
ω1(M − lN)

ω1(M − (l + 1)N)

∑

(n,0)∈Ik

bnz
n−(l+1)Nwl+1 ∈ X.

If l = k, then it is clear that

TzNw

∑

(n,0)∈Ik

bnz
n−lNwl = 0.

Moreover, for l > 0, we obtain

T ∗

zNw

∑

(n,0)∈Ik

bnz
n−lNwl =

∑

(n,0)∈Ik

bn
ω2(l)

ω2(l − 1)
zn−(l−1)Nwl−1

=
ω2(l)

ω2(l − 1)

∑

(n,0)∈Ik

bnz
n−(l−1)Nwl−1 ∈ X.

If l = 0, then it is easy to see that

T ∗

zNw

∑

(n,0)∈Ik

bnz
n = 0.

By these computation, we can show that X is a reducing subspace of TzNw. �

Proposition 2.2. If p is a transparent polynomial, then Xp is the minimal

reducing subspace.

Proof. It is clear from Lemma 2.1. �
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For f ∈ Hol(D2), we denote f (k)(0, 0) = ∂k

∂kz
f(0, 0). For any subspace X

with X 6= {0}, let (M, 0) be minimal multi-index such that there exists some
f ∈ X with f (M)(0, 0) 6= 0 but g(k)(0, 0) = 0 for all g ∈ X and (k, 0) < (M, 0).
We call (M, 0) the order of X at the origin.

Proposition 2.3. Let X ⊂ X⊥

0 be a nonzero reducing subspace of TzNw and

(M, 0) the order of X at the origin. Then X has a transparent polynomial

containing the term zM .

Proof. Throughout the proof of Proposition 2.3, we denote T = TzNw.
If f is a function in X with Taylor expansion

f(z, w) =
∑

(n1,n2)

a(n1, n2)z
n1wn2 ,

then the mapping from f to f (M)(0, 0) is a bounded linear functional on
H2(D2, dµ). By Riesz representation theorem, the extremal problem

sup{Ref (M)(0, 0); f ∈ X, ‖f‖ ≤ 1}

has a unique solution G with ‖G‖ = 1 and G(M)(0, 0) > 0. At first we prove

T ∗G = 0. Put gf = G+Tf

‖G+Tf‖
for f ∈ X . Since Reg

(M)
f (0, 0) ≤ G(M)(0, 0), it is

easy to see that ‖G + Tf‖ ≥ 1 for all f ∈ X . From this inequality we obtain
G ⊥ Tf . Since T ∗G ∈ X , we obtain T ∗G = 0. Let k′ be a natural number
such that (M, 0) ∈ Ik′ . The same argument shows that T k′+1G = 0. Therefore
the function G is in the form of G(z) =

∑

(n,0)∈Ik′
bnz

n.

Let G(z) =
∑Ñ

i=1 gi(z) be the canonical decomposition of G with gi 6= 0. It

is trivial that g1 contains the term zM . Put (M (i), 0) the minimal multi-index
of gi. We note that if i < j, then (M (i), 0) and (M (j), 0) are not equivalent,
and (M, 0) ≤ (M (i), 0) < (M (j), 0).

Now we will show that g1 is in X . Put gj(z) =
∑

n≥M(j) bnz
n. Here we see

that for k ≤ M(j)

N
,

(T ∗)kT kgj

= (T ∗)k
∑

n

ω1(n− (k − 1)N)

ω1(n− kN)

ω1(n− (k − 2)N)

ω1(n− (k − 1)N)
· · ·

ω1(n)

ω1(n− k)
bnz

n−kNwk

= (T ∗)k
∑

n

ω1(n)

ω1(n− kN)
bnz

n−kNwk

= (T ∗)k
∑

n

ω1(M
(j))

ω1(M (j) − kN)
bnz

n−kNwk

=
ω1(M

(j))

ω1(M (j) − kN)
(T ∗

zNw)
k
∑

n

bnz
n−kNwk
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=
ω1(M

(j))

ω1(M (j) − kN)

∑

n

ω2(1)

ω2(0)

ω2(2)

ω2(1)
· · ·

ω2(k)

ω2(k − 1)
bnz

n

=
ω1(M

(j))

ω1(M (j) − kN)
·
ω2(k)

ω2(0)
gj ,

using the definition of gj and Lemma 1.1. Therefore

(

ω1(M
(j))

ω1(M (j) − kN)
·
ω2(k)

ω2(0)
− (T ∗)kT k

)

gj = 0.(1)

For each natural number j = 2, 3, . . . , Ñ , we choose an integer kj such that

ω1(M
(j))

ω1(M (j) − kjN)
6=

ω1(M)

ω1(M − kjN)

and put

Cj =
ω2(kj)

ω2(0)

(

ω1(M
(j))

ω1(M (j) − kjN)
−

ω1(M)

ω1(M − kjN)

)

.

We will generate the sequence of functions in X inductively as follows;

G2 =

(

ω1(M
(2))

ω1(M (2) − k2N)
·
ω2(k2)

ω2(0)
− (T ∗)k2T k2

)

1

C2
G

and

Gj =

(

ω1(M
(j))

ω1(M (j) − kjN)
·
ω2(kj)

ω2(0)
− (T ∗)kjT kj

)

1

Cj

Gj−1.

For example, we have

G2 = g1 +
1

C2
·
ω2(k2)

ω2(0)

Ñ
∑

i=3

(

ω1(M
(2))

ω1(M (2) − k2N)
−

ω1(M
(i))

ω1(M (i) − k2N)

)

gi.

We note that the function g2 vanishes but the function g1 never vanishes from
the equality (1) in this calculation.

More generally, let

A(j, i) =

j−1
∏

l=2

ω1(M
(l))

ω1(M(l)−klN)
− ω1(M

(i))
ω1(M(i)−klN)

ω1(M(l))
ω1(M(l)−klN)

− ω1(M)
ω1(M−klN)

,

and we obtain

Gj−1 = g1 +

Ñ
∑

i=j

A(j, i)gi

for 3 ≤ j ≤ Ñ and GÑ = g1 which is in X . It is obvious that g1 contains the

term zM and is transparent. �
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3. Main results

Now we state our main result.

Theorem 3.1. Let X ⊂ X⊥

0 be a reducing subspace of TzNw on H2(D2, dµ).
Then the reducing subspace X contains the minimal reducing subspace Xp where

p is a transparent polynomial. Moreover X is the minimal reducing subspace of

TzNw if and only if there exists a transparent polynomial p such that X = Xp.

Proof. Let X be a reducing subspace of TzNw. From Proposition 2.3, there
exists a transparent polynomial p. By Lemma 2.1, Xp is the smallest reducing
subspace containing p and therefore Xp ⊂ X . In addition, if X is minimal,
then it is clear that X = Xp. The converse is true from Proposition 2.2. �

In the rest of this paper, we will show some examples. First we consider the
case of the weighted Bergman space A2

α(D
2), where

ω1(n) = ω2(n) =
n!Γ(2 + α)

Γ(2 + α+ n)

for α > −1.

Corollary 3.2. Let X ⊂ X⊥

0 be a reducing subspace of TzNw on A2
α(D

2). The

reducing subspace X is minimal if and only if X is in the form of

Xn = Span{zn−lNwl; 0 ≤ l ≤
n

N
}

for any natural number n ≥ N .

Proof. It is enough to show that any pair of two distinct multi-indice in I is
not equivalent. Assume

ω1(m)

ω1(m− k)
=

ω1(n)

ω1(n− k)

for 0 < k ≤ m and 0 < k ≤ n. This equality implies

m!Γ(2 + α+m− k)

(m− k)!Γ(2 + α+m)
=

n!Γ(2 + α+ n− k)

(n− k)!Γ(2 + α+ n)
.

In particular, when k = 1, we obtain the equality
m

1 + α+m
=

n

1 + α+ n
,

which implies m = n. Thus we conclude that any pair of two distinct multi-
indice in I is not equivalent. Therefore every transparent polynomial is a
monomial. �

Next we consider the case of the abstract Hardy space. Let C(D2) be the

algebra of complex-valued continuous functions on D
2
and A a uniform algebra

on D
2
containing |z|. A probability measure m on D

2
denotes a representing

measure for some complex homomorphism. The abstract Hardy space H2 =
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H2(m) determined by A is defined to be closure of A in L2 = L2(m). In this
case,

∫

fgdm =
∫

fdm
∫

gdm holds true for f, g ∈ H2.

Lemma 3.3. Any pair of two multi-indices in I is equivalent if H2(D2, dµ) is
a closed subspace of the abstract Hardy space H2(m).

Proof. Put r =
∫

D2 |z|
2dm. Using the equality

∫

fgdm =
∫

fdm
∫

gdm, we
have

ω1(n) =

∫

D2

|z|2ndm = (

∫

D2

|z|2dm)n = rn.

Therefore for all m,n,

ω1(m)

ω1(m− kN)
=

rm

rm−kN
= rkN =

rn

rn−kN
=

ω1(n)

ω1(n− kN)
.

�

It is obvious to see that Corollary 3.4 follows from Lemma 3.3.

Corollary 3.4. Every reducing subspace X ⊂ X⊥

0 of TzNw in the weighted

Hardy space which is a closed subspace of H2(m) is minimal.
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