REDUCING SUBSPACES FOR A CLASS OF TOEPLITZ OPERATORS ON WEIGHTED HARDY SPACES OVER BIDISK

Shuhei Kuwahara

Abstract

We consider weighted Hardy spaces on bidisk \mathbb{D}^{2} which generalize the weighted Bergman spaces $A_{\alpha}^{2}\left(\mathbb{D}^{2}\right)$. Let z, w be coordinate functions and $T_{\bar{z}^{N}}$ Toeplitz operator with symbol $\bar{z}^{N} w$. In this paper, we study the reducing subspaces of $T_{\bar{z}^{N}}$ on the weighted Hardy spaces.

1. Introduction

Let X be a closed subspace in a Hilbert space. Then X is an invariant subspace of an operator A if $A X \subset X$. In addition, X is a reducing subspace of an operator A if X is an invariant subspace of both A and its adjoint A^{*}. The reducing subspace X is called minimal if $\{0\}$ and X are the only reducing subspaces contained in X.

Many mathematicians study the reducing subspaces of operators on Hilbert spaces. For instance, M. Albaseer, Y. Lu and Y. Shi [1] determined the reducing subspaces of Toeplitz operator $T_{z^{N}} \bar{w}^{M}$ on the Bergman space $A^{2}\left(\mathbb{D}^{2}\right)$, where N and M are positive integers. In this paper, we will study the reducing subspaces of the operator $T_{\bar{z}^{N} w}$ on weighted Hardy spaces over bidisk. The weighted Hardy spaces over bidisk is a generalization of the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{D}^{2}\right)$. The definitions and notations in this paper are as follows.

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C}. For $j=1,2$, let $d \mu_{j}=$ $d \sigma_{j}(r) d \theta_{j} / 2 \pi$ be the probably measures on the unit disk $\overline{\mathbb{D}}$. We consider weighted Hardy space $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$ which is the closure of all analytic polynomials in $L^{2}\left(\mathbb{D}^{2}, d \mu\right)$, where $d \mu(z, w)=d \mu_{1}(z) d \mu_{2}(w)$. Here $L^{2}\left(\mathbb{D}^{2}, d \mu\right)$ is the Hilbert space of square integrable functions on \mathbb{D}^{2} with the inner product

$$
\langle f, g\rangle=\int_{\mathbb{D}^{2}} f(z, w) \overline{g(z, w)} d \mu_{1}(z) d \mu_{2}(w)
$$

[^0]If $d \mu_{1}(z)=d \mu_{2}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)$ where $\alpha>-1$ and $d A$ is the normalized area measure on \mathbb{D}, then the weighted Hardy space $H^{2}\left(\mathbb{D}^{2}, d \mu_{1} d \mu_{2}\right)$ is the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{D}^{2}\right)$ over bidisk \mathbb{D}^{2}.

Next we will introduce notions of weight sequences. Put

$$
\omega_{1}(n)=\int_{\mathbb{D}}|z|^{2 n} d \mu_{1}(z), \omega_{2}(n)=\int_{\mathbb{D}}|w|^{2 n} d \mu_{2}(w)
$$

Throughout this paper, we assume that

$$
\sup _{n} \frac{\omega_{1}(n+1)}{\omega_{1}(n)}<\infty \text { and } \sup _{n} \frac{\omega_{2}(n+1)}{\omega_{2}(n)}<\infty
$$

so that the multiplication operators defined by z and w are bounded. Let P be the orthogonal projection from $L^{2}\left(\mathbb{D}^{2}, d \mu\right)$ onto $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$. For φ in L^{∞}, put

$$
T_{\varphi} f=P(\varphi f)\left(f \in H^{2}\left(\mathbb{D}^{2}, d \mu\right)\right)
$$

and then T_{φ} is called a Toeplitz operator. By calculation we have the following lemma.

Lemma 1.1. Let N_{1} and N_{2} be natural numbers. The following equalities hold:

$$
T_{\bar{z}^{N_{1}} w^{N_{2}}}\left(z^{k} w^{l}\right)= \begin{cases}\frac{\omega_{1}(k)}{\omega_{1}\left(k-N_{1}\right)} z^{k-N_{1}} w^{l+N_{2}} & \left(k \geq N_{1}\right) \\ 0 & \left(k<N_{1}\right)\end{cases}
$$

and

$$
T_{\bar{z}^{N_{1}} w^{N_{2}}}^{*}\left(z^{k} w^{l}\right)= \begin{cases}\frac{\omega_{2}(l)}{\omega_{2}\left(l-N_{2}\right)} z^{k+N_{1}} w^{l-N_{2}} & \left(l \geq N_{2}\right) \\ 0 & \left(l<N_{2}\right)\end{cases}
$$

for nonnegative integers k, l.
From Lemma 1.1, we show an example of the reducing subspaces of $T_{\bar{z}^{N} w}$.
Proposition 1.2. Let $I_{0}=\{(n, 0) ; 0 \leq n<N\}$ as a subset of multi-indices. A subspace

$$
X_{0}=\operatorname{Span}\left\{z^{n} ;(n, 0) \in I_{0}\right\}
$$

is contained in the kernel of $T_{\bar{z}^{N} w}$ and $T_{\bar{z}^{N} w}^{*}$. Moreover X_{0} is the reducing subspace of $T_{\bar{z}^{N} w}$, where we denote by Span X the closed linear span of a subset X in $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$.

In this paper, we study the reducing subspaces contained in X_{0}^{\perp}. Fix a natural number N. Our main theorems are as follows. For the definition of transparent polynomials, see Section 2.

Theorem 1.3. Let $X \subset X_{0}^{\perp}$ be a reducing subspace of $T_{\bar{z}^{N} w}$ on $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$. Then the reducing subspace X contains the minimal reducing subspace X_{p} where p is a transparent polynomial. Moreover X is the minimal reducing subspace of $T_{\bar{z}^{N} w}$ if and only if there exists a transparent polynomial p such that $X=X_{p}$.

In Section 2, we will prepare for considering the reducing subspaces of the operator $T_{\bar{z}^{N} w}$ contained in X_{0}^{\perp}. We note that the statements in Section 2 is valid even if $N=1$. In Section 3, we will state our main theorem and study examples of the reducing subspaces on concrete function spaces. In this paper, we use the technique in $[4,5,7]$ with the similar way.

2. Preliminaries

Let I be a subset of multi-indices such that $I=\{(n, 0) ; n \geq N\}$. We put the order on the set I induced by the set of nonnegative integers; $(m, 0)<(n, 0)$ if $m<n$.

We say that $(m, 0) \in I$ and $(n, 0) \in I$ are equivalent if

$$
\frac{\omega_{1}(m)}{\omega_{1}(m-l N)}=\frac{\omega_{1}(n)}{\omega_{1}(n-l N)}
$$

for all l satisfying $0<l N \leq m, 0<l N \leq n$. In this case, we write $(m, 0) \sim$ $(n, 0)$.

For a natural number k, let I_{k} be a subset of I such that

$$
I_{k}=\{(n, 0) ; k N \leq n \leq(k+1) N-1\}
$$

If a polynomial $p(z)$ is in a form of

$$
p(z)=\sum_{(n, 0) \in I_{k}} b_{n} z^{n}
$$

then we say that p is a transparent polynomial when we have $\alpha \sim \beta$ for any two nonzero coefficient b_{α}, b_{β} of p.

We partition the set I_{k} into equivalent classes and sort them in the order of the minimal multi-index. We denote the sorted equivalent classes by $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{\tilde{N}}$ with $\tilde{N} \leq N$.

For a function $p(z)=\sum_{(n, 0) \in I_{k}} a_{n} z^{n}$, the decomposition

$$
p(z)=\sum_{m} p_{m}(z)
$$

is called the canonical decomposition of p, where

$$
p_{m}(z)=\sum_{(n, 0) \in \Omega_{m}} a_{n} z^{n}
$$

We note that each g_{i} is orthogonal to g_{j} if $i \neq j$.
Let \mathbb{S} be the vector space consisting of all finite linear combinations of finite products of the operators $T_{\bar{z}^{N} w}$ and its adjoint $T_{\bar{z}^{N} w}^{*}$. For any $f \in H^{2}\left(\mathbb{D}^{2}, d \mu\right)$, we put $\mathbb{S} f=\{T f ; T \in \mathbb{S}\}$. Denote the closure of $\mathbb{S} f$ in $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$ by X_{f} which we call the reducing subspace generated by f. It is easy to see that X_{f} is the smallest reducing subspace containing f. Lemma 2.1 shows the relation between reducing subspaces and transparent polynomials.

Lemma 2.1. If

$$
p(z, w)=\sum_{(n, 0) \in I_{k}} b_{n} z^{n}
$$

is a transparent polynomial, then

$$
X_{p}=\operatorname{Span}\left\{\sum_{(n, 0) \in I_{k}} b_{n} z^{n-l N} w^{l} ; 0 \leq l \leq k\right\}
$$

Proof. Let

$$
X=\operatorname{Span}\left\{\sum_{(n, 0) \in I_{k}} b_{n} z^{n-l N} w^{l} ; 0 \leq l \leq k\right\}
$$

It is obvious that $p \in X \subset X_{p}$. From the definition of X_{p}, it is enough to show that X is a reducing subspace of $T_{\bar{z}^{N} w}$. Let $(M, 0)$ be the minimal multi-index of nonzero coefficients of p. For $0 \leq l<k$, we compute

$$
\begin{aligned}
& T_{\bar{z}^{N} w} \sum_{(n, 0) \in I_{k}} b_{n} z^{n-l N} w^{l} \\
= & \sum_{(n, 0) \in I_{k}} b_{n} \frac{\omega_{1}(n-l N)}{\omega_{1}(n-(l+1) N)} z^{n-(l+1) N} w^{l+1} \\
= & \sum_{(n, 0) \in I_{k}} b_{n} \frac{\omega_{1}(M-l N)}{\omega_{1}(M-(l+1) N)} z^{n-(l+1) N} w^{l+1} \\
= & \frac{\omega_{1}(M-l N)}{\omega_{1}(M-(l+1) N)} \sum_{(n, 0) \in I_{k}} b_{n} z^{n-(l+1) N} w^{l+1} \in X .
\end{aligned}
$$

If $l=k$, then it is clear that

$$
T_{\bar{z}^{N} w} \sum_{(n, 0) \in I_{k}} b_{n} z^{n-l N} w^{l}=0
$$

Moreover, for $l>0$, we obtain

$$
\begin{aligned}
T_{\bar{z}^{N} w}^{*} \sum_{(n, 0) \in I_{k}} b_{n} z^{n-l N} w^{l} & =\sum_{(n, 0) \in I_{k}} b_{n} \frac{\omega_{2}(l)}{\omega_{2}(l-1)} z^{n-(l-1) N} w^{l-1} \\
& =\frac{\omega_{2}(l)}{\omega_{2}(l-1)} \sum_{(n, 0) \in I_{k}} b_{n} z^{n-(l-1) N} w^{l-1} \in X
\end{aligned}
$$

If $l=0$, then it is easy to see that

$$
T_{\bar{z}^{N} w}^{*} \sum_{(n, 0) \in I_{k}} b_{n} z^{n}=0
$$

By these computation, we can show that X is a reducing subspace of $T_{\bar{z}^{N} w}$.
Proposition 2.2. If p is a transparent polynomial, then X_{p} is the minimal reducing subspace.
Proof. It is clear from Lemma 2.1.

For $f \in \operatorname{Hol}\left(\mathbb{D}^{2}\right)$, we denote $f^{(k)}(0,0)=\frac{\partial^{k}}{\partial^{k} z} f(0,0)$. For any subspace X with $X \neq\{0\}$, let $(M, 0)$ be minimal multi-index such that there exists some $f \in X$ with $f^{(M)}(0,0) \neq 0$ but $g^{(k)}(0,0)=0$ for all $g \in X$ and $(k, 0)<(M, 0)$. We call $(M, 0)$ the order of X at the origin.

Proposition 2.3. Let $X \subset X_{0}^{\perp}$ be a nonzero reducing subspace of $T_{\bar{z}^{N} w}$ and $(M, 0)$ the order of X at the origin. Then X has a transparent polynomial containing the term z^{M}.

Proof. Throughout the proof of Proposition 2.3, we denote $T=T_{\bar{z}^{N} w}$.
If f is a function in X with Taylor expansion

$$
f(z, w)=\sum_{\left(n_{1}, n_{2}\right)} a\left(n_{1}, n_{2}\right) z^{n_{1}} w^{n_{2}}
$$

then the mapping from f to $f^{(M)}(0,0)$ is a bounded linear functional on $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$. By Riesz representation theorem, the extremal problem

$$
\sup \left\{\operatorname{Re} f^{(M)}(0,0) ; f \in X,\|f\| \leq 1\right\}
$$

has a unique solution G with $\|G\|=1$ and $G^{(M)}(0,0)>0$. At first we prove $T^{*} G=0$. Put $g_{f}=\frac{G+T f}{\|G+T f\|}$ for $f \in X$. Since $\operatorname{Re} g_{f}^{(M)}(0,0) \leq G^{(M)}(0,0)$, it is easy to see that $\|G+T f\| \geq 1$ for all $f \in X$. From this inequality we obtain $G \perp T f$. Since $T^{*} G \in X$, we obtain $T^{*} G=0$. Let k^{\prime} be a natural number such that $(M, 0) \in I_{k^{\prime}}$. The same argument shows that $T^{k^{\prime}+1} G=0$. Therefore the function G is in the form of $G(z)=\sum_{(n, 0) \in I_{k^{\prime}}} b_{n} z^{n}$.

Let $G(z)=\sum_{i=1}^{\tilde{N}} g_{i}(z)$ be the canonical decomposition of G with $g_{i} \neq 0$. It is trivial that g_{1} contains the term z^{M}. Put $\left(M^{(i)}, 0\right)$ the minimal multi-index of g_{i}. We note that if $i<j$, then $\left(M^{(i)}, 0\right)$ and $\left(M^{(j)}, 0\right)$ are not equivalent, and $(M, 0) \leq\left(M^{(i)}, 0\right)<\left(M^{(j)}, 0\right)$.

Now we will show that g_{1} is in X. Put $g_{j}(z)=\sum_{n \geq M^{(j)}} b_{n} z^{n}$. Here we see that for $k \leq \frac{M^{(j)}}{N}$,

$$
\begin{aligned}
& \left(T^{*}\right)^{k} T^{k} g_{j} \\
= & \left(T^{*}\right)^{k} \sum_{n} \frac{\omega_{1}(n-(k-1) N)}{\omega_{1}(n-k N)} \frac{\omega_{1}(n-(k-2) N)}{\omega_{1}(n-(k-1) N)} \cdots \frac{\omega_{1}(n)}{\omega_{1}(n-k)} b_{n} z^{n-k N} w^{k} \\
= & \left(T^{*}\right)^{k} \sum_{n} \frac{\omega_{1}(n)}{\omega_{1}(n-k N)} b_{n} z^{n-k N} w^{k} \\
= & \left(T^{*}\right)^{k} \sum_{n} \frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k N\right)} b_{n} z^{n-k N} w^{k} \\
= & \frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k N\right)}\left(T_{\bar{z}^{N} w}^{*}\right)^{k} \sum_{n} b_{n} z^{n-k N} w^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k N\right)} \sum_{n} \frac{\omega_{2}(1)}{\omega_{2}(0)} \frac{\omega_{2}(2)}{\omega_{2}(1)} \cdots \frac{\omega_{2}(k)}{\omega_{2}(k-1)} b_{n} z^{n} \\
& =\frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k N\right)} \cdot \frac{\omega_{2}(k)}{\omega_{2}(0)} g_{j},
\end{aligned}
$$

using the definition of g_{j} and Lemma 1.1. Therefore

$$
\begin{equation*}
\left(\frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k N\right)} \cdot \frac{\omega_{2}(k)}{\omega_{2}(0)}-\left(T^{*}\right)^{k} T^{k}\right) g_{j}=0 \tag{1}
\end{equation*}
$$

For each natural number $j=2,3, \ldots, \tilde{N}$, we choose an integer k_{j} such that

$$
\frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k_{j} N\right)} \neq \frac{\omega_{1}(M)}{\omega_{1}\left(M-k_{j} N\right)}
$$

and put

$$
C_{j}=\frac{\omega_{2}\left(k_{j}\right)}{\omega_{2}(0)}\left(\frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k_{j} N\right)}-\frac{\omega_{1}(M)}{\omega_{1}\left(M-k_{j} N\right)}\right) .
$$

We will generate the sequence of functions in X inductively as follows;

$$
G_{2}=\left(\frac{\omega_{1}\left(M^{(2)}\right)}{\omega_{1}\left(M^{(2)}-k_{2} N\right)} \cdot \frac{\omega_{2}\left(k_{2}\right)}{\omega_{2}(0)}-\left(T^{*}\right)^{k_{2}} T^{k_{2}}\right) \frac{1}{C_{2}} G
$$

and

$$
G_{j}=\left(\frac{\omega_{1}\left(M^{(j)}\right)}{\omega_{1}\left(M^{(j)}-k_{j} N\right)} \cdot \frac{\omega_{2}\left(k_{j}\right)}{\omega_{2}(0)}-\left(T^{*}\right)^{k_{j}} T^{k_{j}}\right) \frac{1}{C_{j}} G_{j-1} .
$$

For example, we have

$$
G_{2}=g_{1}+\frac{1}{C_{2}} \cdot \frac{\omega_{2}\left(k_{2}\right)}{\omega_{2}(0)} \sum_{i=3}^{\tilde{N}}\left(\frac{\omega_{1}\left(M^{(2)}\right)}{\omega_{1}\left(M^{(2)}-k_{2} N\right)}-\frac{\omega_{1}\left(M^{(i)}\right)}{\omega_{1}\left(M^{(i)}-k_{2} N\right)}\right) g_{i} .
$$

We note that the function g_{2} vanishes but the function g_{1} never vanishes from the equality (1) in this calculation.

More generally, let

$$
A(j, i)=\prod_{l=2}^{j-1} \frac{\frac{\omega_{1}\left(M^{(l)}\right)}{\omega_{1}\left(M^{(l)}-k_{l} N\right)}-\frac{\omega_{1}\left(M^{(i)}\right)}{\omega_{1}\left(M^{(i)}-k_{l} N\right)}}{\frac{\omega_{1}\left(M^{(l)}\right)}{\omega_{1}\left(M^{(l)}-k_{l} N\right)}-\frac{\omega_{1}(M)}{\omega_{1}\left(M-k_{l} N\right)}},
$$

and we obtain

$$
G_{j-1}=g_{1}+\sum_{i=j}^{\tilde{N}} A(j, i) g_{i}
$$

for $3 \leq j \leq \tilde{N}$ and $G_{\tilde{N}}=g_{1}$ which is in X. It is obvious that g_{1} contains the term z^{M} and is transparent.

3. Main results

Now we state our main result.
Theorem 3.1. Let $X \subset X_{0}^{\perp}$ be a reducing subspace of $T_{\bar{z}^{N} w}$ on $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$. Then the reducing subspace X contains the minimal reducing subspace X_{p} where p is a transparent polynomial. Moreover X is the minimal reducing subspace of $T_{\bar{z}^{N} w}$ if and only if there exists a transparent polynomial p such that $X=X_{p}$.
Proof. Let X be a reducing subspace of $T_{\bar{z}^{N} w}$. From Proposition 2.3, there exists a transparent polynomial p. By Lemma 2.1, X_{p} is the smallest reducing subspace containing p and therefore $X_{p} \subset X$. In addition, if X is minimal, then it is clear that $X=X_{p}$. The converse is true from Proposition 2.2.

In the rest of this paper, we will show some examples. First we consider the case of the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{D}^{2}\right)$, where

$$
\omega_{1}(n)=\omega_{2}(n)=\frac{n!\Gamma(2+\alpha)}{\Gamma(2+\alpha+n)}
$$

for $\alpha>-1$.
Corollary 3.2. Let $X \subset X_{0}^{\perp}$ be a reducing subspace of $T_{\bar{z}^{N} w}$ on $A_{\alpha}^{2}\left(\mathbb{D}^{2}\right)$. The reducing subspace X is minimal if and only if X is in the form of

$$
X_{n}=\operatorname{Span}\left\{z^{n-l N} w^{l} ; 0 \leq l \leq \frac{n}{N}\right\}
$$

for any natural number $n \geq N$.
Proof. It is enough to show that any pair of two distinct multi-indice in I is not equivalent. Assume

$$
\frac{\omega_{1}(m)}{\omega_{1}(m-k)}=\frac{\omega_{1}(n)}{\omega_{1}(n-k)}
$$

for $0<k \leq m$ and $0<k \leq n$. This equality implies

$$
\frac{m!\Gamma(2+\alpha+m-k)}{(m-k)!\Gamma(2+\alpha+m)}=\frac{n!\Gamma(2+\alpha+n-k)}{(n-k)!\Gamma(2+\alpha+n)} .
$$

In particular, when $k=1$, we obtain the equality

$$
\frac{m}{1+\alpha+m}=\frac{n}{1+\alpha+n},
$$

which implies $m=n$. Thus we conclude that any pair of two distinct multiindice in I is not equivalent. Therefore every transparent polynomial is a monomial.

Next we consider the case of the abstract Hardy space. Let $C\left(\mathbb{D}^{2}\right)$ be the algebra of complex-valued continuous functions on $\overline{\mathbb{D}}^{2}$ and A a uniform algebra on $\overline{\mathbb{D}}^{2}$ containing $|z|$. A probability measure m on $\overline{\mathbb{D}}^{2}$ denotes a representing measure for some complex homomorphism. The abstract Hardy space $H^{2}=$
$H^{2}(m)$ determined by A is defined to be closure of A in $L^{2}=L^{2}(m)$. In this case, $\int f g d m=\int f d m \int g d m$ holds true for $f, g \in H^{2}$.
Lemma 3.3. Any pair of two multi-indices in I is equivalent if $H^{2}\left(\mathbb{D}^{2}, d \mu\right)$ is a closed subspace of the abstract Hardy space $H^{2}(m)$.

Proof. Put $r=\int_{\mathbb{D}^{2}}|z|^{2} d m$. Using the equality $\int f g d m=\int f d m \int g d m$, we have

$$
\omega_{1}(n)=\int_{\mathbb{D}^{2}}|z|^{2 n} d m=\left(\int_{\mathbb{D}^{2}}|z|^{2} d m\right)^{n}=r^{n}
$$

Therefore for all m, n,

$$
\frac{\omega_{1}(m)}{\omega_{1}(m-k N)}=\frac{r^{m}}{r^{m-k N}}=r^{k N}=\frac{r^{n}}{r^{n-k N}}=\frac{\omega_{1}(n)}{\omega_{1}(n-k N)} .
$$

It is obvious to see that Corollary 3.4 follows from Lemma 3.3.
Corollary 3.4. Every reducing subspace $X \subset X_{0}^{\perp}$ of $T_{\bar{z}^{N} w}$ in the weighted Hardy space which is a closed subspace of $H^{2}(m)$ is minimal.

Acknowledgments. The author is grateful to the referee for his or her valuable comments and suggestions which have contributed to the improvement of the paper.

References

[1] M. Albaseer, Y. Lu, and Y. Shi, Reducing subspaces for a class of Toeplitz operators on the Bergman space of the bidisk, Bull. Korean Math. Soc. 52 (2015), no. 5, 1649-1660.
[2] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
[3] K. Guo and H. Huang, Multiplication Operators on the Bergman Space, Lecture Notes in Mathematics 2145, Springer Berlin, 2015.
[4] S. Kuwahara, Reducing subspaces of weighted Hardy spaces on polydisks, Nihonkai Math. J. 25 (2014), no. 2, 77-83.
[5] , Reducing subspaces of multiplication operators on weighted Hardy spaces over bidisk, to appear in J. Math. Soc. Japan.
[6] A. L. Shields, Weighted shift operators and analytic function theory, in "Topics in Operator Theory", Mathematical Surveys, Vol. 13, Amer. Math. Sot., Providence RI, 1974.
[7] M. Stessin and K. Zhu, Reducing subspace of weighted shift operators, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2631-2639.
[8] K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. 62 (2000), no. 2, 553-568.

Shuhei Kuwahara
Sapporo Seishu High School
Sapporo 064-0916, Japan
E-mail address: s.kuwahara@sapporoseishu.ed.jp

[^0]: Received May 8, 2016; Revised October 24, 2016; Accepted February 1, 2017. 2010 Mathematics Subject Classification. Primary 47B35; Secondary 30H20.
 Key words and phrases. reducing subspaces, Toeplitz operator.

