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A RANDOM DISPERSION SCHRÖDINGER EQUATION

WITH NONLINEAR TIME-DEPENDENT LOSS/GAIN

Hui Jian and Bin Liu

Abstract. In this paper, the limit behavior of solution for the Schröd-
inger equation with random dispersion and time-dependent nonlinear
loss/gain: idu+ 1

ε
m( t

ε2
)∂xxudt+|u|2σudt+iεa(t)|u|2σ0udt = 0 is studied.

Combining stochastic Strichartz-type estimates with L
2 norm estimates,

we first derive the global existence for L2 and H
1 solution of the stochas-

tic Schrödinger equation with white noise dispersion and time-dependent
loss/gain: idu + ∆u ◦ dβ + |u|2σudt + ia(t)|u|2σ0udt = 0. Secondly, we
prove rigorously the global diffusion-approximation limit of the solution
for the former as ε → 0 in one-dimensional L

2 subcritical and critical
cases.

1. Introduction

We are interested in the well-posedness and asymptotic behavior of the so-
lution for a random nonlinear Schrödinger equation (NLSE) including time-
varying coefficient,

(1.1)











idu+ 1
ε
m( t

ε2
)∂xxudt+ |u|2σudt

+iεa(t)|u|2σ0udt = 0, (t, x) ∈ [0,∞)× R,

u(0, x) = u0,

where u0 ∈ H1(R), m is a continuous real-valued centered stationary random
process and models the random dispersion, 0 < σ ≤ 2 and 0 ≤ σ0 ≤ 2. a(t) is
a real function on t and a(t) > 0 or a(t) < 0 denotes the strength of dissipation
(loss) or gain, ε > 0 is a small positive parameter independent of (t, x). The
form of Eq. (1.1) describe the propagation of optical pulses in an optical fibre
with random dispersion management in random media (see [3,4] for example).

Under some classical ergodic assumptions on m and some restrictions on
time-varying coefficient a(t), we will prove that when ε → 0 the solution of

Received April 16, 2016; Accepted April 5, 2017.
2010 Mathematics Subject Classification. 35Q55, 35R60, 37K40.
Key words and phrases. nonlinear Schrödinger equation, random dispersion, time-

dependent nonlinear loss/gain, nonlinear fibre optics.
This work was partially supported by NNSF of China (Grant No. 11571126).

c©2017 Korean Mathematical Society

1195



1196 H. JIAN AND B. LIU

Eq. (1.1) is close to the following stochastic NLSE:

(1.2)

{

idu+∆u ◦ dβ + |u|2σudt = 0, (t, x) ∈ [0,∞)× R,

u(0, x) = u0,

where β is a one-dimensional standard real-valued Brownian motion and ◦ is a
Stratonovich product, 0 ≤ σ ≤ 2.

One of our motivations to study Eq. (1.1) steps from a growing number of re-
searches on deterministic models appearing physics, especially in the theory of
Bose-Einstein condensates (BEC) in quantum mechanics and in the investiga-
tion of optical soliton in nonlinear optics. In the absence of random dispersion
and meanwhile a quadratic potential is included, Eq. (1.1) turns into the case,

(1.3)











idu+ (∆− V (x))u + λ|u|2σudt

+iεa(t)|u|2σ0udt = 0, (t, x) ∈ [0,∞)× R
d,

u(0, x) = u0.

In the context of nonlinear optics (where V (x) = 0), the equation models
the propagation of a laser pulse within an optical fiber under the influence
of additional multi-photon absorption processes [8]; in quantum mechanics,
when considering the three-body interaction in collapsing BEC with harmonic
confinement, a dissipative model involving a quintic nonlinear damping term
is used to describe the emittance of particles from the condensate [24].

In recent years, Eq. (1.3) has been widely studied (see [6–8,16,20–22,28,29]
for example). Particularly, the global well-posedness issues for the case V (x) =
∑d

j ωjx
2
j , ωj ≥ 0 and εa(t) ≡ a > 0 have been considered in [6, 7] using energy

method. Precisely, Antonelli and Sparber in [7] obtain global existence of the
solution for σ = 1 and 1 < σ0 ≤ 2 in dimension d ≤ 3. The recent paper
[6] discusses the case with more general nonlinear indexes σ, σ0 and shows
nonlinear damping prevents finite time blow-up by introducing modified energy
functional and linear energy functional, including the cases of L2 subcritical
(σ < 2

d
and 0 < σ0 ≤ 2

d
), L2 critical (σ = σ0 = 2

d
) and L2 supcritical.

When V (x) = 0, Eq. (1.3) reduce to the following form,

(1.4)

{

idu+∆u+ λ|u|2σudt+ iεa(t)|u|2σ0udt = 0,

u(0, x) = u0,

Applying Kato’s method and perturbation method, Feng et al. in [20] have
discussed exhaustively the existence problem and limit behavior of solution for
Eq. (1.4), whose results strongly depend on the ranges of a(t) and indexes σ, σ0.
In [16], Darwich has studied Eq. (1.4) with a L2 critical nonlinearity where
σ = 2

d
and εa(t) ≡ a > 0 in dimension d ≤ 4. He confirms the global existence

of solution if σ0 ≥ 2/d and the existence of finite time blow-up dynamics in
the log-log regime if σ0 < 2/d. In [22, 29], when εa(t) ≡ a > 0 in Eq. (1.4),
numerical approaches are carried out to investigate the effect of small nonlinear
damping on the properties of solution.
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For V (x) = 0 and σ0 = 0, Eq. (1.3) reduce to the case,

(1.5)

{

idu+∆u+ λ|u|2σudt+ iεa(t)udt = 0,

u(0, x) = u0,

Equations of form (1.5) have also been well-studied, see [21,28,30] for example.
Precisely, Feng et al. [21] have proved the global existence and blowup of solu-
tion for Eq. (1.5) under several different conditions on σ and the time-dependent
coefficient a(t) in both defocusing and focusing cases. Global existence and
blowup results are also derived when εa(t) ≡ a > 0 in [28, 30].

Another motivation comes from the development of the theory of stochastic
analysis and its extensive applications to physical problems. For example,
the study on optical soliton in optical fiber or BEC in quantum mechanics in
random media and the effect of noise on the behavior of solution for NLSE
have attracted growing interests (see [1,2,5,9–14,17–19,23,26,27]). The results
obtained in [10,12,13,17,18,23,27] have shown that the presence of noise really
has great influence on the properties of solution especially in L2 supercritical
case (σ > 2

d
).

Our idea is also initiated by the works [2, 13, 18, 19, 23, 26] on NLSE with
random dispersion management in optical fiber. In particular, from a math-
ematical point of view, the following random NLSE have been considered in
[13, 18, 26],

(1.6)

{

idu+ 1
ε
m( t

ε2
)∂xxudt+ f(|u|2)udt = 0, (t, x) ∈ [0,∞)× R,

u(0, x) = u0,

where m is a centered stationary random process and models the dispersion co-
efficient. [26] is the first paper to study the asymptotic convergence of Eq. (1.6)
with a sufficiently smooth function f by a splitting numerical scheme. Later,
[13, 18] extend the results to the case f(|u|2)u = |u|2σu (σ = 1, 2). More pre-
cisely, the Strichartz-type estimates with stochastic noise are firstly established
in de Bouard and Debussche [13] and Debussche and Tsutsumi [18], which are
more involved to derive than the classical deterministic ones (see for instance
[15, 25]), and are of fundamental importance in solving the cauchy problem
of NLSE. Then by the conservation of L2 norm and Strichartz estimates, the
global well-posedness of solution for Eq. (1.2) in mass subcritical case (σ < 2

d
)

are proved and improved to one-dimensional mass critical situation (σ = 2)
in [13, 18]. Meanwhile, for any T > 0 the convergence of solution for (1.6) is
justified in C([0, T ];Hs(R)) for s < 1 and σ = 1, and in C([0, T ];H1(R)) for
σ = 2 respectively.

Based on [13, 18, 26], Fang et al. [19] have recently studied the rigorous
convergence of Eq. (1.6) with a periodic time-oscillating nonlinearity. In the
forthcoming paper [23], where both time-oscillating nonlinearity and linear
loss/gain are included, we make an improvement of the results in [19].
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Motivated by the researches aforementioned, the main purpose of this article
is to address the limit behavior of Eq. (1.1) as ε → 0. Since Strichartz estimates
are not directly available for Eq. (1.1), to study the asymptotic behavior of this
model, we first turn to investigate the well-posedness problem of the stochastic
Schrödinger equation with white noise dispersion and nonlinear time-dependent
loss/gain,

(1.7)

{

idu+∆u ◦ dβ + |u|2σudt+ ia(t)|u|2σ0udt=0, (t, x) ∈ [0,∞)× R
d,

u(0, x)=u0.

Due to the presence of nonlinear time-dependent disspation/gain a(t), the L2

norm of solution for Eq. (1.7) is no longer preserved, but under some conditions
on time-varying coefficient a(t), we can establish the a priori estimates of L2

norm of solution (see Theorem 2.3 and Theorem 2.5 below), which plays the
vital role to construct global solution of Eq. (1.7) when 0 < σ < 2

d
, 0 ≤ σ0 < 2

d

and d = 1, σ = σ0 = 2.
Therefore, the goal of this work is two-fold. The first one is to prove the

existence of the global solution for Eq. (1.7) when 0 < σ < 2
d
, 0 ≤ σ0 < 2

d

and d = 1, σ = σ0 = 2. The second is to justify the diffusion-approximation
limit of the solution of Eq. (1.1) to the solution of the limit equation (1.2) in
one dimension for 0 < σ ≤ 2 and 0 ≤ σ0 ≤ 2. The methods we exploit are
totally different to the discussion of Eq. (1.4) in the energy subcritical and
critical cases in [20]. Combining the generalized Strichartz-type estimates with
a fixed point argument, we prove the existence of local L2 and H1 solution
for Eq. (1.7), and establish the a priori estimates of mass dissipation. Then
we extend the maximum lifetime of local solution to infinity which strongly
rely on Strichartz-type estimates and the L2 estimates. Lastly, we justify the
asymptotic convergence of solution for Eq. (1.1) based on [13, 18, 19, 23, 26].

We remark that the Hamiltonian structures of Eq. (1.1) and Eq. (1.7) are
destroyed due to the varying random dispersion. Unlike the deterministic cases
in [6, 7, 16, 21], no proper energy functionals can be defined. Thus, no priori
energy estimates and no priori estimates in H1 norm are available for our
consideration. Besides, the a priori estimates of L2 norm of solution are not
sufficient to make sure whether the global solution of Eq. (1.7) exists for σ > 2

d

or σ0 > 2
d
. This is the essential difficulty in the situation of L2 supcritical in

our work.

Notation. Throughout this paper, the notations we use are mostly standard.
R

d is d-dimensional Euclidean space, Lp(Rd), Hs(Rd), W 1,p(Rd) (r, p ≥ 1, s ∈
R) denote the classical Sobolev spaces and C∞

0 (R) is a Banach space consisted
of smooth enough functions with compact support. For convenience sake, we
sometimes denote Lp

x = Lp(Rd), Hs
x = Hs(Rd), W 1,p

x = W 1,p(Rd) and for an
given interval I ⊂ R, we set Lr

tL
p
x = Lr(I;Lp(Rd)), Lr

tW
1,p
x = Lr(I;W 1,p(Rd)).

When considering random variable with respect to a parameter ω ∈ Ω which
has value in Banach space M , we write Lp

ω(M) = Lp(Ω;M)(p ≥ 1). Lr
P
(Ω;M)
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denotes the subspace of predictable processes in Lr(Ω;M)). Note that all the
functions of these spaces are complex-valued throughout this work. ‖ · ‖M and
| · | are used to denote the norm of a Banach space M and absolute value of
a complex number respectively. Bc denotes the complement of the set B. C

represents various different constant and C1 ∧C2 = min {C1, C2}. The number

p
′

is the conjugate exponent of p (p ≥ 1) which satisfies 1
p
+ 1

p
′ = 1.

A pair of real numbers (r, p) is called a Schrödinger-admissible pair if r = ∞
and p = 2 or if it satisfies the following conditions: 2 ≤ r < ∞, 2 ≤ p ≤ ∞ and
2
r
> d(12 − 1

p
).

The structure of this paper is as follows. In the next section, some prelim-
inaries and main results are given. Section 3 is devoted to well-posedness of
solution for Eq. (1.7) (or Eq. (2.4)) in L2 and H1. Section 4 concentrates on
existence and convergence of solution for Eq. (1.1) (or Eq. (2.1)).

2. Preliminaries and main results

Consider the random NLSE with time-dependent nonlinear dissipation/gain,
(2.1)
{

idu+ 1
ε
m( t

ε2
)∂xxudt+ |u|2σudt+ iεa(t)|u|2σ0udt = 0, (t, x) ∈ [0,∞)× R,

u(0, x) = u0,

where u0 ∈ L2
x or H1

x, u is an unknown random process defined on a probability
space (Ω,F ,P), depending on x ∈ R and t > 0. ε is a small positive parameter,
0 < σ ≤ 2 and 0 ≤ σ0 ≤ 2. The dispersion term m is a continuous real-
valued centered stationary random process also related to the probability space
(Ω,F ,P). a(t) > 0 or a(t) < 0 characteristics the strength of dissipation (loss)
or gain.

Under some assumptions on m and a(t), for ε → 0 Eq. (2.1) is expected to
converge to the following limit equation,

(2.2)

{

idu+∆u ◦ dβ + |u|2σudt = 0, (t, x) ∈ [0,∞)× R,

u(0, x) = u0,

where β is a one-dimensional standard Brownian motion defined on the filtrated
probability space (Ω,F ,P, (Ft)t≥0) and ◦ stands for a Stratonovich product.

We denote by S(t, s) = ei(β(t)−β(s))∆ the random dispersion propagator of the
linear part of Eq. (2.2) (see [13, 18]).

In L2 subcritical case (σ < 2
d
) and L2 critical (d = 1, σ = 2) case, the global

existence of solution of Eq. (2.2) have been studied in [13] and [18], which thank
to the conservation of mass norm.

Proposition 2.1 ([13]). Assume 0 < σ < 2
d
; let u0 ∈ L2

x a.s. be F0-

measurable, then there exists a unique solution u to Eq. (2.2) with paths a.s.

in Lr
loc(0,∞;Lp(Rd)) with p = 2σ + 2 ≤ r <

4(σ+1)
dσ

; moreover, u has paths in
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C(R+;L2
x), a.s. and

‖u(t)‖L2
x
= ‖u0‖L2

x
, a.s.

If in addition u0 ∈ H1
x, then u has paths a.s. in C(R+;H1

x).

Proposition 2.2 ([18]). Assume d = 1, σ = 2; let u0 ∈ L2
x a.s. be F0-

measurable, then there exists a unique solution u to Eq. (2.2) with paths a.s.

in L5
loc(0,∞;L10(R)); moreover, u has paths in C(R+;L2

x) a.s. and

‖u(t)‖L2(R) = ‖u0‖L2(R), a.s.

If in addition u0 ∈ H1(R), then u has paths a.s. in C(R+;H1(R)).

Our final objective is to study the convergence of Eq. (2.1) to Eq. (2.2),
therefore we also consider the global existence and uniqueness of the solution
for the stochastic NLSE with white noise dispersion:

(2.3)

{

idu+∆u ◦ dβ + |u|2σudt+ ia(t)|u|2σ0udt = 0, (t, x) ∈ (0,∞)× R,

u(0, x) = u0,

where β(t), a(t), σ, σ0 are as above aforementioned. In Eq. (2.1) and Eq. (2.3)
when σ0 = 0, the corresponding cases are more easier to deal with. In fact, by
scaling transformations

uε(t, x) = e−ε
∫

t

0
a(s)dsvε(t, x) and u(t, x) = e−

∫
t

0
a(s)dsv(t, x),

they can be transformed to the formally equivalent equations as follows:

(2.4)

{

idv+ 1
ε
m( t

ε2
)∂xxvdt+e−2σε

∫
t

0
a(s)ds|v|2σvdt=0, (t, x) ∈ [0,∞)× R,

v(0, x)=u0,

and

(2.5)

{

idv +∆v ◦ dβ + e−2σ
∫

t

0
a(s)ds|v|2σvdt = 0, (t, x) ∈ [0,∞)× R,

v(0, x) = u0,

Thereby, in the subsequent sections we only consider Eq. (2.4) and Eq. (2.5)
in the case σ0 = 0.

One of our main results, i.e., the well-posedness of the solution for Eq. (2.3),
is the following two theorems.

Theorem 2.3. Assume 0 < σ < 2
d
and 0 ≤ σ0 < 2

d
, (r, p) is a Schrödinger-

admissible pair with p = 2σ+2 ≤ r <
4(σ+1)

dσ
; let u0 ∈ L2

x a.s. be F0-measurable,

then

Case 1: 0 < σ < 2
d
, σ0 = 0 and a(t) ∈ L1(0,∞), there exists a unique solution

u to Eq. (2.3) (or Eq. (2.5)) with paths a.s. in Lr
loc(0,∞;Lp(Rd)); moreover, u

has paths in C(R+;L2
x), a.s. and

‖u(t)‖2L2
x
= e−2

∫
t

0
a(s)ds‖u0‖

2
L2

x
, a.s.
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Case 2: 0 < σ = σ0 < 2
d
, a(t) ∈ L∞(0,∞) and a(t) ≥ 0, there exists a unique

solution u of Eq. (2.3) with paths a.s. in Lr
loc(0,∞;Lp(Rd)); moreover, u has

paths in C(R+;L2
x), a.s. and

‖u(t)‖2L2
x
= ‖u0‖

2
L2

x
− 2

∫ t

0

a(s)‖u(s)‖2+2σ

L
2+2σ
x

ds, a.s.

In particular,

‖u(t)‖2L2
x
≤ ‖u0‖

2
L2

x
, t ≥ 0, a.s.

If in addition u0 ∈ H1
x in the two cases above, then u has paths a.s. in

C(R+;H1
x).

Remark 2.4. (i) If a(t) ≡ 0, the conclusion of Theorem 2.1 in [13] is a spe-
cial case of our theorem. From this point of view, our result generalizes the
conclusion of [13].

(ii) For the case 0 < σ 6= σ0 < 2
d
or σ = 2

d
and σ0 < 2

d
(d > 1), it’s worthy

of considering the global well-posedness issue of Eq. (2.3).

Theorem 2.5. Assume d = 1, 0 < σ ≤ 2 and 0 ≤ σ0 ≤ 2, let u0 ∈ L2
x a.s. be

F0-measurable, then

Case 1: σ = 2, σ0 = 0 and a(t) ∈ L1(0,∞), there exists a unique solution u to

Eq. (2.3) (or Eq. (2.5)) with paths a.s. in L5
loc(0,∞;L10(R)); moreover, u has

paths in C(R+;L2(R)), a.s. and

‖u(t)‖2L2(R) = e−2
∫

t

0
a(s)ds‖u0‖

2
L2(R), a.s.

Case 2: σ = σ0 = 2, a(t) ∈ L∞(0,∞) and a(t) ≥ 0, there exists a unique

solution u of Eq. (2.3) with paths a.s. in L5
loc(0,∞;L10(R)); moreover, u has

paths in C(R+;L2(R)), a.s. and

‖u(t)‖2L2(R) = ‖u0‖
2
L2(R) − 2

∫ t

0

a(s)‖u(s)‖6L6(R)ds, a.s.

In particular,

‖u(t)‖2L2
x
≤ ‖u0‖

2
L2

x
, t ≥ 0, a.s.

If in addition u0 ∈ H1(R) in the two cases above, then u has paths a.s. in

C(R+;H1(R)).

Remark 2.6. The theorem slightly generalizes the conclusion of [16] to white
noise dispersion in one dimension.

For Eq. (2.1), we have the following convergence theorem.

Theorem 2.7. Assume m(t) is a continuous real-valued random process de-

fined on a probability space (Ω,F ,P) and for any T > 0, the process t 7→

ε
∫

t

ε2

0 m(s)ds converges to a standard real-valued Brownian motion in C([0, T ])
in distribution. Let u0 ∈ H1(R) a.s. be F0-measurable, then for any ε > 0,
there exists a unique local solution uε of Eq. (2.1) with paths almost surely in
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C([0, τε(u0));H
1(R)) where [0, τε(u0)) is a random interval, in the following

two cases:
(1) 0 < σ ≤ 2, σ0 = 0 and a(t) ∈ L1(0,∞);
(2) 0 < σ = σ0 ≤ 2 and a(t) ∈ L∞(0,∞).

Moreover, for any T > 0

lim
ε→0

P
(

τε(u0) ≤ T
)

= 0,

and the process uε1[τε > T ] converges in distribution to the solution u of

Eq. (2.2) in C([0, T ];H1(R)).

Remark 2.8. (i) When a(t) ≡ 0, the conclusions of Theorem 2.3 in [13] and
Theorem 2.2 in [18] are special ones of our theorem. From this point of view,
our result improves the conclusions of [13, 18].

(ii) We are also interested in the convergence issue for the case 0 < σ 6= σ0 ≤
2, but we don’t discuss it in this paper.

(iii) The convergence results can be generalized to the space C([0, T ];Hs(R))
where 1

2 < s ≤ 1.

3. The well-posedness of solution for Eq. (2.3) in L
2 and H

1

This section is devoted to the well-posedness of solution for Eq. (2.3). It’s
well known that Strichartz type estimates are key tools to solve the classical
NLSE in whole space R

d. The stochastic Strichartz type estimates in random
case are of the similar importance. Now, we recall the Strichartz type estimates
of white noise dispersion, which are established in [13] and [18].

Lemma 3.1 ([13]). Let (r, p) be an admissible pair, let ρ be a positive constant

such that r′ ≤ ρ ≤ r; there exists a constant cρ,r,p > 0 such that for any

s ∈ R, T ≥ 0 and f ∈ L
ρ
P
(Ω;Lr

′

(s, s+ T ;Lp
′

x )),

‖

∫

·

s

S(·, σ)f(σ)dσ‖Lρ(Ω;Lr(s,s+T ;Lp
x)) ≤ cρ,r,pT

β‖f‖
L

ρ

P
(Ω;Lr′ (s,s+T ;Lp′

x ))·

and for any us ∈ Lρ(Ω;L2
x)), Fs-measurable,

‖S(·, s)us‖Lρ(Ω;Lr(s,s+T ;Lp
x)) ≤ cr,pT

β
2 ‖us‖Lρ

ω(L2
x)

with β = 2
r
− d

2 (
1
2 − 1

p
).

Lemma 3.2 ([13]). Let(r, p) and (γ, δ) be two admissible pairs such that

1

γ
=

1− λ

r
,

1

δ
=

λ

2
+

1− λ

p
,

with λ ∈ [0, 1], and ρ be a positive constant such that max{ρ, ρ
′

} ≤ r; then
there exists a constant c(r, p, γ, δ, ρ) such that for any s ∈ R, T ≥ 0,
(3.1)

‖

∫

·

s

S(·, σ)f(σ)dσ‖Lρ(Ω;Lr(s,s+T ;Lp
x)) ≤ c(r, p, γ, δ, ρ)T β̃‖f‖

Lρ(Ω;Lγ
′

(s,s+T ;Lδ
′

x ))
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if

f ∈ L
ρ
P
(Ω;Lγ

′

(s, s+ T ;Lδ
′

x ))

and

(3.2)

‖

∫

·

s

S(·, σ)f(σ)dσ‖Lρ(Ω;Lγ(s,s+T ;Lδ
x))

≤ c(r, p, γ, δ, ρ)T β̃‖f‖
Lρ(Ω;Lr

′

(s,s+T ;Lp
′

x ))

if f ∈ L
ρ
P
(Ω;Lr

′

(s, s+ T ;Lp
′

x )). In the latter case, we also have
∫

·

s

S(·, σ)f(σ)dσ ∈ Lρ(Ω;C([s, s+ T ];L2
x)).

Here, β̃ = (2
r
− d

2 (
1
2 − 1

p
))(1 − λ

2 ). Furthermore, for homogeneous propagation

S(·, s)us, similar estimates as (3.1) and (3.2) also hold, with β̃

2 instead of β̃ on

top of T on the right hand side.

Lemma 3.3 ([18]). There exists a constant κ such that for any s ∈ R, T ≥ 0
and f ∈ L4

P
(Ω;L1(s, s + T ;L2(R))), the mapping t 7→

∫

·

s
S(·, σ)f(σ)dσ belongs

to L4
P
(Ω;L5(s, s+ T ;L10(R))), and

‖

∫

·

s

S(·, σ)f(σ)dσ‖L4(Ω;L5(s,s+T ;L10(R))) ≤ κT
1
10 ‖f‖L4

P
(Ω;L1(s,s+T ;L2(R)))

and for any us ∈ L4(Ω;L2(R)), Fs-measurable,

‖S(·, s)us‖L4
P
(Ω;L5(s,s+T ;L10(R))) ≤ cT

1
10 ‖us‖L4(Ω;L2(R)).

Remark 3.4. (i) By taking the first order space derivative, the above inequalities
in Lemmas 3.1-3.3 also hold when Lp

x is replaced by W 1,p
x .

(ii) When a deterministic nonzero dispersion µ∆u is included in the linear
part of Eq. (2.2), we can derive the analogous Strichartz estimates, where the
random dispersion propagator is replaced by T (t, s) = ei(β(t)−β(s)+µ(t−s))∆.

Given a smooth function θ ∈ C∞

0 (R) such that

θ(x) =

{

1, |x| ≤ 1,
0, |x| ≥ 2.

Now, we discuss the existence problem of solution for Eq. (2.3) in the following
two cases.
Case 1: 0 < σ < 2

d
, σ0 = 0 and a(t) ∈ L1(0,∞).

Consider the truncation of the Itô form corresponding to Eq. (2.5),

(3.3)

{

idvM+ i
2∆

2vMdt+∆vMdβ+ e−2σ
∫

t

0
a(s)dsθM (vM )|vM |2σvMdt=0,

vM (0)=u0,

and its mild form,

(3.4) vM (t) = S(t, 0)u0 + i

∫ t

0

S(t, s)e−2σ
∫

t

0
a(s)dsθM (vM )|vM |2σvM (s)ds,
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where θM (v)(t) = θ

(

‖v‖
Lr(0,t;L

p
x)

M

)

.

Theorem 3.5. Assume 0 < σ < 2
d

and σ0 = 0, (r, p) is a Schrödinger-

admissible pair with p = 2σ + 2 ≤ r <
4(σ+1)

dσ
. For any F0-measurable u0 ∈

Lr
ω(L

2
x), there exists a unique solution vM of Eq. (3.4) in Lr

P
(Ω;Lr(0, T ;Lp

x)
for any T > 0. Moreover vM is a weak solution of Eq. (3.3) in the sense that

for any ϕ ∈ C∞

0 (R) and t ≥ 0,

i(vM − u0, ϕ)L2
x

= −
i

2

∫ t

0

(vM ,∆2ϕ)L2
x
ds−

∫ t

0

e−2σ
∫

s

0
a(ρ)dρ(θM (vM )|vM |2σvM , ϕ)L2

x
ds

−

∫ t

0

(vM ,∆ϕ)L2
x
dβ(s)

and the L2
x norm is preserved,

‖vM‖2L2
x
= ‖u0‖

2
L2

x
, t ≥ 0, a.s.

In addition, v ∈ C([0, T ];L2
x) a.s.

Proof. The proof of this case is similar to [13], for completeness, we list the
main procedures. For convenience sake, we omit the M dependence in the
proof. Define

(3.5) JMv(t) = S(t, 0)u0 + i

∫ t

0

S(t, s)e−2σ
∫

t

0
a(τ)dτθ(v)(|v|2σv)(s)ds.

We can prove JM is a strict contraction on the complete metric space,

XT = Lr(Ω;Lr(0, T ;Lp(Rd)))

equipped with the metric

d(v1, v2) = ‖v1 − v2‖Lr
ωLr

TL
p
x
,

where p = 2σ + 2 and 2σ + 2 ≤ r <
4(σ+1)

dσ
, and provided T ≤ T0, T0 only

depends on M . In fact, by Lemma 3.1, for v ∈ XT , we obtain

‖JMv‖XT
≤ CT

β
2 ‖u0‖Lr

ωL
2
x
+ CT β‖e−2σ

∫
s

0
a(τ)dτθ(v)|v|2σv‖

Lr
ωLr′

T L
p′

x

≤ C‖u0‖Lr
ωL

2
x
+ C‖e−2σ

∫
s

0
a(τ)dτ‖L∞T βT 1− 2σ+2

r M2σ‖v‖Lr
ωL

r
TL

p
x

< ∞.

Besides, for v1, v2 ∈ XT , define

τMi = inf {t ∈ [0, T ], ‖vi(t)‖Lr(0,t;Lp
x) ≥ 2M}, i = 1, 2,

and assume τM1 ≤ τM2 , then we get (see [13]),

d(JMv1, JMv2)

= ‖JMv1 − JMv2‖Lr
ωLr

T
L

p
x
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≤ C‖e−2σ
∫

s

0
a(τ)dτ‖L∞T β

∥

∥

∥

∥

θ(v1)|v1|
2σv1 − θ(v2)|v2|

2σv2

∥

∥

∥

∥

Lr
ωLr′

T
L

p′

x

≤ C‖e−2σ
∫

s

0
a(τ)dτ‖L∞T βT 1− 2σ+2

r M2σ‖v1 − v2‖Lr
ΩLr′

T
Lp

with β = 2
r
− d

2 (
1
2 − 1

p
). Therefore, there exists T0 > 0 depending only on M

such that for T ≤ T0,

C‖e−2σ
∫

s

0
a(τ)dτ‖L∞T βT 1− 2σ+2

r M2σ < 1.

That is,

d(JMv1, JMv2) < d(v1, v2).

It means that JM : XT → XT is strictly contractive for T small enough. Then
by some reiterative procedures, we can obtain a unique local solution vM (t) on
XT for Eq. (3.4) (or Eq. (3.5)) for T > 0.

It’s classical to show vM (t) is a weak solution of (3.4). In fact, for any
ϕ ∈ C∞

0 (R), multiplying Eq. (3.3) by ϕ and integrating by parts in R
d, then

i(vM − u0, ϕ)L2
x

= −
i

2

∫ t

0

(vM ,∆2ϕ)L2
x
ds−

∫ t

0

e−2σ
∫

s

0
a(ρ)dρ(θM (vM )|vM |2σvM , ϕ)L2

x
ds

−

∫ t

0

(vM ,∆ϕ)L2
x
dβ(s).

Next, we prove the conservation of L2
x norm. Let R ≥ 0, we define a regular-

ization of solution v: vR = PRv by a truncation in Fourier space: v̂R(t, ξ) =

θ
(

|ξ|

M

)

v̂(t, ξ). Then by Eq. (3.3), we get

idvR +
i

2
∆2vRdt+∆vRdβ + e−2σ

∫
t

0
a(s)dsPR(θ(v)|v|

2σv)dt = 0.

By Itô formula, we obtain

‖vR‖
2
L2

x
= ‖u0‖

2
L2

x
+Re

(

i

∫ t

0

e−2σ
∫

s

0
a(τ)dτ(θ(v)|v|2σv, PRv)ds

)

.

Let R → ∞, then we have in L2σ+2(0, T ;L2σ+2
x ) that

lim
R→∞

PRvR = v.

Therefore, v ∈ L2σ+2(0, T ;L2σ+2
x ). Let R → ∞, then

lim
R→∞

‖vR‖
2
L2

x
= ‖u0‖

2
L2

x
, t ∈ [0, T ], a.s.

That is, for any t ∈ [0, T ], v ∈ L2
x and ‖v‖2L2

x
= ‖u0‖

2
L2

x
. By Eq. (3.3) and the

continuity of ‖v(t)‖L2
x
on t, we know v ∈ C([0, T ];L2

x) and ‖v‖2L2
x
= ‖u0‖

2
L2

x
a.s.

Then the conclusion of Theorem 3.5 follows. �
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Case 2: 0 < σ = σ0 < 2
d
and a(t) ∈ L∞(0,∞).

Consider the truncation of the Itô equation corresponding to Eq. (2.3),

(3.6)











iduM + i
2∆

2uMdt+∆uMdβ + θM (uM )|uM |2σuMdt

+ ia(t)θM (uM )|uM |2σuMdt = 0,

uM (0) = u0,

and its mild form,

uM (t) = S(t, 0)u0 + i

∫ t

0

S(t, s)θM (uM )(|uM |2σuM )(s)ds

−

∫ t

0

S(t, s)a(s)θM (uM )(|uM |2σuM )(s)ds,(3.7)

where θM (v)(t) = θ
(

‖v‖
Lr(0,t;L

p
x)

M

)

.

Then, we have the following conclusion.

Theorem 3.6. Let 0 < σ=σ0 < 2
d
and a(t)∈L∞(0,∞), (r, p) is a Schrödinger-

admissible pair such that p = 2σ+2 ≤ r <
4(σ+1)

dσ
. For any F0-measurable u0 ∈

Lr
ω(L

2
x), there exists a unique solution uM ∈ Lr

P
(Ω;Lr(0, T ;Lp

x) of Eq. (3.7)
(or Eq. (3.6)) for any T > 0. Furthermore, for any ϕ ∈ C∞

0 (R) and any t ≥ 0,
uM is a weak solution of Eq. (3.6) in the following sense,

i(uM − u0, ϕ)L2
x

= −
i

2

∫ t

0

(uM ,∆2ϕ)L2
x
ds−

∫ t

0

(θM (uM )|uM |2σuM , ϕ)L2
x
ds

− i

∫ t

0

a(s)(θM (uM )|uM |2σuM , ϕ)L2
x
ds−

∫ t

0

(uM ,∆ϕ)L2
x
dβ(s).

Then the L2
x norm has the following estimate,

‖uM (t)‖2L2
x
= ‖u0‖

2
L2

x
− 2

∫ t

0

a(s)‖uM (s)‖2+2σ

L
2+2σ
x

ds, t ≥ 0, a.s.

In addition, if a(t) ≥ 0, then

‖uM (t)‖2L2
x
≤ ‖u0‖

2
L2

x
, t ≥ 0, a.s.

and u ∈ C([0, T ];L2
x) a.s.

Proof. For convenience consideration, we also omit the dependence on M in
the proof.

Consider also the complete metric space

XT = Lr(Ω;Lr(0, T ;Lp(Rd)))

equipped with the metric

d(v1, v2) = ‖v1 − v2‖Lr
ωLr

T
L

p
x
,

where p = 2σ + 2 and 2σ + 2 ≤ r <
4(σ+1)

dσ
.
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Define

JMu(t) = S(t, 0)u0 + i

∫ t

0

S(t, s)θ(u)|u|2σu(s)ds

−

∫ t

0

S(t, s)a(s)θ(u)|u|2σu(s)ds,(3.8)

then JM defines a strict contraction on XT if T ≤ T0 and T0 only depends on
M . In fact, for any v ∈ XT and v1, v2 ∈ XT , by Lemma 3.1 the estimates
below hold,

‖JMv‖Lr
ωL

r
TL

p
x
≤ CT

β
2 ‖u0‖Lr

ωL2
x
+ CT β‖θ(v)|v|2σv‖

Lr
ωLr′

T
L

p′

x

+ CT β‖a(s)θ(v)|v|2σv‖
Lr

ωLr′

T
L

p′

x

≤ C‖u0‖Lr
ΩL2

x
+ C(‖a(s)‖L∞ + 1)T βT 1− 2σ+2

r M2σ‖v‖Lr
ωL

r
T
L

p
x

< ∞

and

d(JMv1, JMv2) = ‖JMv1 − JMv2‖Lr
ωLr

T
L

p
x

≤ CT β

∥

∥

∥

∥

(

θ(v1)|v1|
2σv1 − θ(v2)|v2|

2σv2

)∥

∥

∥

∥

Lr
ωLr′

T L
p′

x

+ CT β

∥

∥

∥

∥

a(s)

(

θ(v1)|v1|
2σv1 − θ(v2)|v2|

2σv2

)∥

∥

∥

∥

Lr
ωLr′

T L
p′

x

≤ C(‖a(s)‖L∞ + 1)T βT 1− 2σ+2
r M2σ‖v1 − v2‖Lr

ωLr
TL

p
x
,

where β = 2
r
− d

2 (
1
2 − 1

p
). Therefore, there exists T0 > 0 depending only on M

such that for T ≤ T0,

C(‖a(s)‖L∞ + 1)T βT 1− 2σ+2
r M2σ < 1.

That’s to say, JM : XT 7→ XT is strictly contractive for T small enough.
Similarly, procedure, we can obtain the unique solution uM (t) of Eq. (3.7) (or
Eq. (3.8)) on XT for T > 0 and it is a L2-weak solution of (3.5).

Next, we prove the estimate of L2 norm for the solution. We define the
regularization of solution u: uR = PRu by a Fourier truncation: ûR(t, ξ) =

θ
(

|ξ|

M

)

û(t, ξ). By Eq. (3.6), we obtain

iduR +
i

2
∆2uRdt+∆uRdβ + PR(θ(u)|u|

2σu)dt+ ia(t)PR(θ(u)|u|
2σu)dt = 0,

Applying Itô formula to ‖uR‖
2
L2

x
, we obtain

‖uR‖
2
L2

x
=‖u0‖

2
L2

x
+Re

(

i

∫ t

0

(θ(u)|u|2σu, PRu)ds

)

−

∫ t

0

a(s)(θ(u)|u|2σu, PRu)ds.



1208 H. JIAN AND B. LIU

Let R → ∞, similarly we have in L2σ+2(0, T ;L2σ+2
x )

lim
R→∞

PRuR = u

and

lim
R→∞

‖uR‖
2
L2

x
= ‖u0‖

2
L2

x
−

∫ t

0

a(s)‖u‖2σ+2

L
2σ+2
x

ds, t ∈ [0, T ], a.s.

If a(t) ≥ 0, then ‖u‖2L2
x

≤ ‖u0‖
2
L2

x
. In particular, u ∈ L∞(0, T ;L2

x). By

Eq. (3.6), we know u ∈ H−4
x and its paths are continuous almost surely. Then

u is weak continuous on t in L2
x. Since the L2

x norm of u(t) is continuous on t,
we know u ∈ C(0, T ;L2

x) and ‖u‖2L2
x
≤ ‖u0‖

2
L2

x
a.s. Hence, the proof of Theorem

3.5 is completed. �

In the following, we only give the proof of Theorem 2.3. For the proof of
Theorem 2.4 in the L2 critical case (d = 1, σ = 2), we can utilize the method
of [18] combined with Lemma 3.3 to justify it. Here we omit the details.

Proof of Theorem 2.3. We use the solutions of the truncated problems dis-
cussed above to construct the global solutions of Eq. (2.3) and Eq. (2.5).

Fix T0 > 0, we construct the solution of Eq. (2.3) and Eq. (2.5) on [0, T0].

Let (r, p) be a Schrödinger-admissible pair such that 2σ + 2 = p ≤ r <
4(σ+1)

dσ
.

Case 1: 0 < σ ≤ 2, σ0 = 0 and a(t) ∈ L1(0,∞). Define

τM = inf {t ∈ [0, T ], ‖vM(t)‖Lr(0,t;Lp
x) ≥ M},

then we know τM is nondecreasing respect to M , and vM1(t) = vM2(t) on
[0, τM1 ∧ τM2 ], thus the solution of Eq. (2.5) is unique.

Lemma 3.7. There exist constants c1, c2 such that if

T
−

drσ
4(σ+1)

+r−2σ‖e−2σ
∫

t

0
a(τ)dτ‖L∞(0,∞) ≤ c1M

−2rσ,

then

P(τM ≤ T ) ≤
c2E‖u0‖

r
L2

x

M r
.

Proof. The proof is based on Lemma 5.1 in [13]. Set

vM1[0,τM ](t) =S(t, 0)u01[0,τM ](t)

+ i

∫ t

0

S(t, s)e−2σ
∫

s

0
a(τ)dτ (|vM |2σvM )1[0,τM ](s)ds1[0,τM ](t),(3.9)

then for any T ≤ T0, by Lemma 3.1 and Hölder’s inequality

E(‖vM1[0,τM ](t)‖
r
Lr(0,T ;Lp

x)
)

≤ c(r, T0)E‖u0‖
r
L2

x

+ cT
−

drσ
4(σ+1)

+r−2σ
M2rσ‖e−2σ

∫
t

0
a(τ)dτ‖rL∞(0,∞)E(‖vM1[0,τM ](t)‖

r
Lr(0,T ;Lp

x)
),
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where thanks to a(t) ∈ L1(0,∞). Thereby, if

cT
−

drσ
4(σ+1)

+r−2σ
M2rσ‖e−2σ

∫
t

0
a(τ)dτ‖L∞(0,∞) ≤

1

2
,

then
E(‖vM1[0,τM ](t)‖

r
Lr(0,T ;Lp

x)
) ≤ 2c(r, T0)E‖u0‖

r
L2

x
.

By Markov inequality, then

P(τM ≤ T ) ≤
c2E‖u0‖

r
L2

x

M r
.

�

Now, we proceed the proof of Case 1. By Theorem 3.4, ‖vM‖2L2
x
= ‖u0‖

2
L2

x
,

then we can apply iteration scheme invented by [13] to construct the solution
of Eq. (2.5) on [0, T0], thus we can derive the global L2-solution of Eq. (2.5),
here we omit the detailed procedures.

By the transformation u(t, x) = e−
∫

t

0
a(s)dsv(t, x) and a(t) ∈ L1(0,∞), we

know for any 0 < T ≤ ∞, u(t, x) make sense. Then u(t, x) = e−
∫

t

0
a(s)dsv(t, x) ∈

C(R+, L2
x), and

‖u(t)‖2L2
x
= e−2

∫
t

0
a(s)ds‖v(t)‖2L2

x
= e−2

∫
t

0
a(s)ds‖u0‖

2
L2

x
.

Finally, for u0 ∈ H1
x, by Strichartz-type estimates in Lemma 3.1 and Lemma

3.2, we can use the method of [13] to obtain the regularity conclusion u(t, x) ∈
C(R+, H1

x). Thus, we finish the proof of the first part of Theorem 2.3.
Case 2: 0 < σ = σ0 < 2

d
and a(t) ∈ L∞(0,∞). Define

τ̄M = inf {t ∈ [0, T ], ‖uM(t)‖Lr(0,t;Lp
x) ≥ M},

then we can derive the analogous unique argument of the solution for Eq. (2.3)
as Case 1.

Lemma 3.8. There exist constants c̄1, c̄2 such that if

T
−

drσ
4(σ+1)

+r−2σ(‖a(t)‖L∞(0,∞) + 1) ≤ c̄1M
−2rσ,

then we have

P(τ̄M ≤ T ) ≤
c̄2E‖u0‖

r
L2

x

M r
.

Proof. Denote

uM1[0,τ̄M ](t) = S(t, 0)u01[0,τ̄M ](t)

+ i

∫ t

0

S(t, s)(|uM |2σuM )1[0,τ̄M ](s)ds1[0,τ̄M ](t)

−

∫ t

0

S(t, s)a(s)(|uM |2σuM )1[0,τ̄M ](s)ds1[0,τ̄M ](t).(3.10)

For any T ≤ T0, by Strichartz estimates in Lemma 3.1 and Hölder’ inequality,
it follows that

E(‖uM1[0,τ̄M ](t)‖
r
Lr(0,T ;Lp

x)
)
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≤ c(r, T0)E‖u0‖
r
L2

x

+ cT
−

drσ
4(σ+1)

+r−2σ
M2rσ(‖a(t)‖L∞(0,∞) + 1)E(‖uM1[0,τ̄M ](t)‖

r
Lr(0,T ;Lp

x)
).

Therefore, if

cT
−

drσ
4(σ+1)

+r−2σ
M2rσ(‖a(t)‖L∞(0,∞) + 1) ≤

1

2
,

then

E(‖uM1[0,τ̄M ](t)‖
r
Lr(0,T ;Lp

x)
) ≤ 2c(r, T0)E‖u0‖

r
L2

x

by Markov inequality, we get

P(τ̄M ≤ T ) ≤
c2E‖u0‖

r
L2

x

M r
.

�

We use iterative method of the time interval to construct the solution of
Eq. (2.3) on [0, T0]. Fix M > 0, then u = uM defines a unique solution of
Eq. (2.3) on [0, τ̄M ]. Set τ̄M1 = τ̄M . Consider the following equation:

u(t+ τ̄M )

= S(t+ τ̄M , τ̄M )u(τ̄M )

+ i

∫ t

0

S(t+ τ̄M , s+ τ̄M )θτ̄
M

M (u)(|u(s+ τ̄M )|2σu(s+ τ̄M ))ds

−

∫ t

0

S(t+ τ̄M , s+ τ̄M )a(s+ τ̄M )θτ̄
M

M (u)|u(s+ τ̄M )|2σu(s+ τ̄M )ds.

Repeating the procedures of Theorem 3.6, then we can derive a solution uM
2 of

Eq. (2.3). In fact, assume

τ̄M2 = inf {t ∈ [0, T ], ‖uM
2 ‖Lr(τ̄M ,t+τ̄M ;Lp

x) ≥ M}.

Then we obtain a solution of the non-truncated equation on [τ̄M , τ̄M + τ̄M2 ].
That is, it defines a solution u of Eq. (2.3) on [0, τ̄M+ τ̄M2 ], and we have u = uM

on [0, τ̄M ] and u = uM
2 on [τ̄M , τ̄M + τ̄M2 ]. By Lemma 3.8 and the a priori

estimate of L2
x norm in Theorem 3.6, if T−

drσ
4(σ+1)

+r−2σ(‖a(t)‖L∞(0,∞) + 1) ≤

c̄1M
−2rσ, then

P(τ̄M2 ≤ T |Fτ̄M ) ≤
c̄2E‖uτ̄M‖r

L2
x

M r
≤

c̄2E‖u0‖
r
L2

x

M r
.

Continue the iterative schemes above repeatly, then we can construct the solu-
tion of non-truncated equation (2.3) on [0, TM

n ], where TM
n = τ̄M + τ̄M2 + · · ·+

τ̄Mn . That is, u = uM on [0, τ̄M ], u = uM
2 on [τ̄M , τ̄M + τ̄M2 ], . . ., u = uM

n on
[TM

n−1, T
M
n ]. By Lemma 3.8 we get

P(τ̄Mn ≤ T |FTM
n−1

) ≤
c2E‖u0‖

r
L2

x

M r
.
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Notice that

P( lim
n→∞

τ̄Mn = 0) = lim
ε→0

lim
N→∞

P(τ̄Mn ≤ ε, ∀n ≥ N).

Choose M large enough and ε
−

drσ
4(σ+1)+r−2σ(‖a(t)‖L∞(0,∞) + 1) ≤ c1M

−2rσ, it
follows that

P(τ̄Mn ≤ ε|FTM
n−1

) ≤
1

2
.

Thus, according to the method of [13] we conclude

P(τ̄Mn ≤ ε, ∀n ≥ N) ≤ lim
M→∞

1

2M−N
= 0.

Thereby

P( lim
n→∞

τ̄Mn = 0) = 0,

which means limn→∞ TM
n = limn→∞(τ̄M + τ̄M2 + · · ·+ τ̄Mn ) = ∞ almost surely.

Then we construct the global L2-solution of Eq. (2.3) in the second case.
For u0 ∈ H1

x, by (3.8) and Lemma 3.1, taking the first order space derivative,
then

‖JM∇u‖Lr
ωL

r
TL

p
x
≤ C1T

β
2 ‖∇u0‖Lr

ωL
2
x

+ C2T
1− 2σ

r
−

dσ
4(σ+1) (‖a(t)‖L∞(0,∞) + 1)‖∇u‖Lr

ωL
r
T
L

p
x

therefore

‖JMu‖
Lr

ωL
r
TW

1,p
x

≤ C1T
β
2 ‖u0‖Lr

ωH
1
x

+ C2T
1− 2σ

r
−

dσ
4(σ+1) (‖a(t)‖L∞(0,∞) + 1)‖u‖Lr

ωL
r
T
W

1,p
x

by Lemma 3.2, the solution u(t, x) ∈ C(R+, H1
x). Consequently, the conclusion

of Theorem 2.3 in the second case follows. �

4. Existence and convergence of solution for Eq. (2.1)

This section is devoted to the existence and global convergence of solution
for Eq. (2.1), i.e., the proof Theorem 2.7.

Proof of Theorem 2.7. The proof is based on [13,18,19,26]. We first study the
asymptotic convergence for truncated equation of Eq. (2.1).
Case 1: 0 < σ ≤ 2, σ0 = 0 and a(t) ∈ L1(0,∞).

The conclusion of this case is not difficult to prove, where thanks to the fact:
for any f ∈ Lr(Ω;L1(0, T ;H1(R))), 0 < T < ∞, a(t) ∈ L1(0,∞) and for any
δ > 0

lim
ε→0

P(‖

∫ t

0

(e−2σε
∫

s

0
a(τ)dτ − 1)Sβ(t, s)f(s)ds‖H1(R) > δ) = 0, ∀t ∈ [0, T ].

We ignore the details and concentrate on the proof of the following situation.
Case 2: 0 < σ = σ0 ≤ 2 and a(t) ∈ L∞(0,∞).
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Consider the truncated equations of mild forms corresponding to Eq. (2.1)
and Eq. (2.2):

uM
ε (t) = Sε(t, 0)u0 + i

∫ t

0

Sε(t, s)FM (|uM
ε |2)uM

ε (s)ds

− ε

∫ t

0

Sε(t, s)a(s)FM (|uM
ε |2)uM

ε (s)ds,(4.1)

uM (t) = S(t, 0)u0 + i

∫ t

0

S(t, s)FM (|uM |2)uM )(s)ds,(4.2)

where FM (x) = θ( x
M
)xσ and Sε(t, s) denotes the dispersion propagator of the

linear equation

idv +
1

ε
m(

t

ε2
)∂xxvdt = 0.

For the sake of the existence of solution of Eq. (4.1), we consider the NLSE
below:

(4.3)











idu+ ṅ(t)∂xxudt+ FM (|uM |2)uM (t)dt

+iεa(s)FM (|uM |2)uM (s) = 0, (t, x) ∈ [0,∞)× R,

u(0) = u0,

and its mild form,

uM
n (t) = Sn(t, 0)u0 + i

∫ t

0

Sn(t, s)FM (|uM
n |2)uM

n (s)ds

− ε

∫ t

0

Sn(t, s)a(s)FM (|uM
n |2)uM

n (s)ds,(4.4)

where FM (x) is as above, n(t) ∈ C([0, T ]), Sn(t, s) = ei(n(t)−n(s))∂xx is the
evolution operator of

idu+ ṅ(t)∂xxudt = 0.

Since a(t) ∈ L∞(0,∞), FM (|uM |2)uM is smooth enough with compact support
and Sn(t, s) is isometric on H1(R), then for ∀ ε > 0 and t < T < ∞, there
exists a unique solution uM

n (t) of Eq. (4.4) in C([0, T ];H1(R)) by a fixed point
argument. Thus the solution uM

ε (t) of Eq. (4.1) in C([0, T ];H1(R)) exists.

According to the assumption that the process 1
ε

∫ t

0
m( t

ε2
)ds converges to

β(t) in C([0, T ]) in distribution for fixed T > 0, by Skorohod Theorem, we can
find a new probability space and a class of random variables nε defined on it

such that: nε is equal to 1
ε

∫ t

0 m( t
ε2
)ds in law in C([0, T ]) for any ε > 0 and

nε converges to a standard real-valued Brownian motion β̃ in C([0, T ]) almost

surely, where β̃ has the same law as β(t) in C([0, T ]). Now, we consider the
stochastic equations corresponding to (4.1) and (4.2):

uM
nε
(t) = Snε

(t, 0)u0 + i

∫ t

0

Snε
(t, s)FM (|uM

nε
|2)uM

ε (s)ds
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− ε

∫ t

0

Snε
(t, s)a(s)FM (|uM

nε
|2)uM

nε
(s)ds,(4.5)

uM

β̃
(t) = Sβ̃(t, 0)u0 + i

∫ t

0

Sβ̃(t, s)FM (|uM

β̃
|2)uM

β̃
(s)ds,(4.6)

where FM (x) = θ( x
M
)xσ. Since nε (equal to

∫ t

0
m( t

ε2
)ds) is continuous in

C([0, T ]), we deduce from the aforementioned debate that for u0 ∈ H1(R),
there exists a unique solution uM

nε
(t) of Eq. (4.5) in C([0, T ];H1(R)) a.s.

For convenience, we omit the dependence on M in the following. For any
0 < t ≤ T < ∞,

unε
(t)− uβ̃(t)

= Snε
(t, 0)u0 − Sβ̃(t, 0)u0

+ i

∫ t

0

Snε
(t, s)F (|unε

|2)unε
(s)ds− i

∫ t

0

Sβ̃(t, s)F (|uβ̃ |
2)uβ̃(s)ds

− ε

∫ t

0

Snε
(t, s)a(s)F (|unε

|2)unε
(s)ds

= Snε
(t, 0)u0 − Sβ̃(t, 0)u0

+ i

∫ t

0

(Snε
(t, s)− Sβ̃(t, s))F (|uβ̃ |

2)uβ̃(s)ds

+ i

∫ t

0

Snε
(t, s)(F (|unε

|2)unε
− F (|uβ̃ |

2)uβ̃)(s)ds

− ε

∫ t

0

(Snε
(t, s)− Sβ̃(t, s))a(s)F (|unε

|2)unε
(s)ds

− ε

∫ t

0

Sβ̃(t, s)a(s)F (|unε
|2)unε

(s)ds

= I + II + III + IV + V.(4.7)

For any u0 ∈ H1(R), we can prove n → Sn(t, 0)u0 is continuous from C([0, T ])
to C([0, T ];H1(R)) (see [18]). Therefore, for ∀ δ > 0, there exists δ1 > 0 such

that when ‖nε − β̃‖C([0,T ]) ≤ δ1, we have

‖I‖C([0,T ];H1(R)) = ‖Snε
(t, 0)u0 − Sβ̃(t, 0)u0‖C([0,T ];H1(R)) ≤ δ.(4.8)

Since the mapping v → F (|v|2)v is continuous on H1(R), by a compactness
argument (see Section 5 in [18]), we conclude that for any δ > 0, there exists

δ2 > 0 such that when ‖nε − β̃‖C([0,T ]) ≤ δ2,

‖II‖H1(R) =

∥

∥

∥

∥

∫ t

0

(Snε
(t, s)− Sβ̃(t, s))(F (|vβ̃ |

2)vβ̃)(s)ds

∥

∥

∥

∥

H1(R)

≤ 3CTδ.(4.9)
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For the fourth term IV , since a(t) ∈ L∞(0,∞), similar to II for any δ > 0
(such as δ = ε), we conclude that there exists δ3 > 0 such that when ‖nε −

β̃‖C([0,T ]) ≤ δ3,

‖IV ‖H1(R) = ε

∥

∥

∥

∥

∫ t

0

(Snε
(t, s)− Sβ̃(t, s))a(s)F (|uβ̃ |

2)uβ̃(s)ds

∥

∥

∥

∥

H1(R)

≤ 3C‖a(t)‖L∞(0,∞)εT δ.(4.10)

For the third term III, since Snε
(t, s) is isometric on L2(R) and H1(R), we

get

‖III‖L2(R) ≤

∫ t

0

‖(F (|unε
|2)uε − F (|uβ̃ |

2)uβ̃)(s)‖L2ds

≤ C(M)

∫ t

0

‖unε
− uβ̃‖L2ds(4.11)

and

‖III‖H1(R) ≤

∥

∥

∥

∥

∫ t

0

Snε
(t, s)(F (|unε

|2)unε
− F (|uβ̃ |

2)uβ̃)(s)ds

∥

∥

∥

∥

H1(R)

≤ C

∫ t

0

‖F (|unε
|2)vnε

− F (|uβ̃ |
2)uβ̃)‖H1ds(4.12)

then for λ = min{1, 2σ} ≤ 1, we obtain (see Section 3 in [19]),

‖∇(F (|vnε
|2)unε

− F (|uβ̃|
2)uβ̃))‖L2

≤ C(M)‖unε
− vβ̃‖H1 + C(M)‖uβ̃‖H1(‖unε

− uβ̃‖
λ
L∞).

Set C0 = C(θ,M, ‖φ1‖L∞ , supt∈[0,T ] ‖uβ̃‖H1), then we can estimate (4.12) as
follows,

‖III‖H1(R) ≤ C0

∫ t

0

(‖unε
− uβ̃‖H1 + ‖unε

− uβ̃‖
λ
L∞)ds.

For 0 < σ ≤ 1
2 , λ = 2σ, then we have

‖III‖H1 ≤ C0

∫ t

0

(‖unε
− uβ̃‖H1 + ‖unε

− uβ̃‖
σ
L2‖unε

− uβ̃‖
σ
H1)ds

≤ C(T )‖unε
− uβ̃‖

σ
1−σ

L2 + C

∫ t

0

‖unε
− uβ̃‖H1ds,(4.13)

where thanks to Gagliardo-Nirenberg’s inequality and Young’s inequality. For
1
2 ≤ σ ≤ 2, then λ = 1, by Sobolev embedding we get

‖III‖H1 ≤ C0

∫ t

0

(‖unε
− uβ̃‖H1 + ‖unε

− uβ̃‖L∞)ds

≤ C(T )

∫ t

0

‖unε
− uβ̃‖H1ds.(4.14)
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For the fifth term V , by the isometry property of Sβ̃ , then for any δ > 0

(δ = ε), we obtain the following

‖V ‖H1(R) =

∥

∥

∥

∥

ε

∫ t

0

Sβ̃(t, s)a(s)F (|unε
|2)unε

(s)ds

∥

∥

∥

∥

H1(R)

≤ ε‖a(t)‖L∞(0,∞)

∫ t

0

‖F (|unε
|2)unε

‖H1
x
ds

≤ C‖a(t)‖L∞(0,∞)Tε,(4.15)

where the constant C depends on ‖unε
‖H1(R).

Now we can show unε
converges to uβ̃ in C([0, T ];H1(R)) in distribution.

Since nε converges to β̃ in C([0, T ]) almost surely, denote Aε(δ) = {ω : ‖nε −

β̃‖C([0,T ]) < δ}, then for ∀δ > 0

lim
ε→0

P
(

Ac
ε(δ)

)

= 0.

Hence, for any δ̄ > 0 and Aε(δ1∧δ2) = {ω : ‖nε−β̃‖C([0,T ]) < δ1 ∧ δ2}, where δ1
and δ2 are as in (4.8) and (4.9), we can choose ε̄ > 0 such that for ∀ 0 < ε < ε̄,

(4.16) P
(

Aε(δ1 ∧ δ2)
)

> 1− δ̄.

By the definition of Aε together with (4.8), (4.9), (4.10), for ε < ε̄ and ω ∈ Aε,
we then have

‖unε
− uβ̃‖L2 ≤ C(T )δ + C

∫ t

0

‖unε
− uβ̃‖L2ds.

We obtain by Gronwall’s inequality

sup
t∈[0,T ]

‖unε
− uβ̃‖L2 ≤ C(T )eCT δ.

By the definition of Aε and (4.8)-(4.10), (4.13), for 0 < σ ≤ 1
2 , it holds that

‖unε
− uβ̃‖H1 ≤ C(T )δ + C(T )‖unε

− uβ̃‖
σ

1−σ

L2 + C

∫ t

0

‖unε
− uβ̃‖H1ds

≤ C(T )δ
σ

1−σ + C

∫ t

0

‖unε
− uβ̃‖H1ds.

By Gronwall’s inequality again, we derive

(4.17) sup
t∈[0,T ]

‖unε
− uβ̃‖H1 ≤ C(T )eCT δ

σ
1−σ .

For 1
2 ≤ σ ≤ 2, by (4.8)-(4.10), (4.14), (4.15) and Gronwall’s inequality we

have

(4.18) ‖unε
− uβ̃‖H1 ≤ C(T )δ + C

∫ t

0

‖unε
− uβ̃‖H1ds ≤ C(T )eCT δ.
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Hence, by (4.16)-(4.18) we then gain that

P
(

‖unε
− uβ̃‖L∞

T
(H1) > C(T )eCT δ

σ
1−σ

)

≤ P
(

Ac
ε

)

≤ δ̄ for 0 < σ ≤
1

2
,

and

P
(

‖unε
− uβ̃‖L∞

T
(H1) > C(T )eCT δ

)

≤ P
(

Ac
ε

)

≤ δ̄ for
1

2
≤ σ ≤ 2,

which indicate that the solution uM
nε

of Eq. (4.5) converges to the solution uM

β̃

of Eq. (4.6) in C([0, T ];H1(R)) in provability. We know by the above discussion
that uM

nε
is equal to uM

ε , and uM

β̃
is equal to uM in distribution respectively.

From the previous arguments, we deduce that the solution uM
ε of























idu+ 1
ε
m

(

t
ε2

)

∂xxudt+ θ

(

|u|2

M

)

|u|2σudt

+iεa(s)θ

(

|u|2

M

)

|u|2σudt = 0, x ∈ R, t > 0,

u(0) = u0,

converges in distribution in C([0, T ];H1(R)) to the solution uM of






idu+ ∂xxu ◦ dβ + θ

(

|u|2

M

)

|u|2σudt = 0, x ∈ R, t > 0,

u(0) = u0,

By Skorohod Theorem, for each fixed M , uM
ε converges to uM almost surely in

C([0, T ];H1(R)). That is, the convergence of truncated equation for Eq. (4.1)
to Eq. (4.2) is proved.

Now we can extend the convergence result to the original equations (2.1)
and (2.2). Define

τ̃Mε = inf{t ≥ 0; ‖uM
ε ‖2L∞

x
≥ M}.

Then, τ̃Mε is increasing with respect to M and uε = uM
ε on [0, τ̃Mε ], which

defines a local unique solution uε of (2.1) with τε = limM→∞ τ̃Mε . Define

τ̃M = inf{t ≥ 0; ‖uM‖2L∞

x
≥ M}.

Similarly, we have u = uM on [0, τ̃M ] and limM→∞ τ̃M = ∞ (see Theorem 2.1
(d = 1, 0 < σ < 2) and Theorem 2.2 (d = 1, σ = 2)). For some 0 < δ ≤ 1,
assume

(4.19) τ̃M−1 ≥ T and ‖uM
ε − uM‖C([0,T ];H1

x)
≤ δ,

then u = uM on [0, T ]. By (4.19) and Sobolev embedding, choosing δ small
enough, then

‖uM
ε ‖L∞([0,T ];L∞

x (R)) ≤ ‖uM‖L∞

T (L∞

x ) + C‖uM
ε − uM‖C([0,T ];H1

x)

≤ (M − 1)
1
2 + Cδ ≤ M

1
2 .
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Thus T < τ̃Mε ≤ τε, and uM
ε = uε, u

M = u on [0, T ], therefore

(4.20) ‖uε − u‖C([0,T ];H1
x)

≤ δ.

Then, for δ small enough, by (4.19), it follows that

P(τε ≤ T or ‖uε − u‖C([0,T ];H1
x)
>δ)

= P(τε≤T ) +P(τε>T and ‖uε − u‖C([0,T ];H1)>δ)

≤ P(τ̃M−1 < T or ‖uε − u‖C([0,T ];H1
x)

> δ)

≤ P(τ̃M−1 < T ) +P(‖uε − u‖C([0,T ];H1
x)

> δ).(4.21)

By Theorem 2.1 and Theorem 2.2, u ∈ C(R+;H1(R)) almost surely, then

(4.22) lim
M→∞

P(τ̃M−1 < T ) = 0.

By (4.20), it is obvious that

(4.23) lim
ε→0

P(‖uε − u‖C([0,T ];H1
x)

> δ) = 0.

Hence by (4.21)-(4.23)

lim
ε→0

P(τε ≤ T ) ≤ lim
ε→0

P(τε ≤ T or ‖uε − u‖C([0,T ];H1
x)
>δ) = 0,

and
lim
ε→0

P(τε > T and ‖uε − u‖C([0,T ];H1(R)) > δ) = 0.

Then we complete the proof. �
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[5] V. Barbu, M. Röckner, and D. Zhang, Stochastic nonlinear Schrödinger equations with

linear multiplicative noise: rescaling approach, J. Nonlinear Sci. 24 (2014), no. 3, 383–
409.

[6] P. Antonelli, R. Carles, and C. Sparber, On nonlinear Schrödinger-type equations with

nonlinear damping, Int. Math. Res. Not. 2015 (2015), no. 3, 740–762.
[7] P. Antonelli and C. Sparber, Global well-posedness for cubic NLS with nonlinear damp-

ing, Comm. Partial Differential Equations 35 (2010), no. 12, 2310–2328.
[8] A. Biswas, Optical soliton perturbation with nonlinear damping and saturable amplifiers,

Math. Comput. Simullation 56 (2001), no. 6, 521–537.
[9] A. de Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with

multiplicative noise, Comm. Math. Phys. 205 (1999), no. 1, 161–181.
[10] , On the effect of a noise on the solutions of supercritical Schrödinger equation,

Probab. Theory Related Fields 123 (2002), no. 1, 76–96.
[11] , The stochastic nonlinear Schrödinger equation in H

1, Stochastic Anal. Appl.
21 (2003), no. 1, 97–126.

[12] , Blowup for the supercritical Schrödinger equation with multiplicative noise,
Ann. Probab. 33 (2005), no. 3, 1078–1110.



1218 H. JIAN AND B. LIU

[13] , The nonlinear Schrödinger equation with white noise dispersion, J. Funct. Anal.
259 (2010), no. 5, 1300–1321.

[14] A. de Bouard and R. Fukuizumi, Representation formula for stochastic Schrödinger

evolution equations and applications, Nonlinearity 25 (2012), no. 11, 2993–3022.
[15] T. Cazenave, Semilinear Schrödinger equations, in: Courant Lecture Notes in Math-

ematics, American Mathematical Society, Courant Institute of Mathematical Sciences,
2003.

[16] M. Darwich, On the L
2-critical nonlinear Schrödinger equation with a nonlinear damp-

ing, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2377–2394.
[17] A. Debussche and L. DiMenza, Numerical simulation of focusing stochastic Schrödinger

equation, Phys. D 162 (2002), no. 3-4, 131–154.
[18] A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrödinger equation with white

noise dispersion, J. Math. Pures Appl. 96 (2011), no. 4, 363–376.
[19] D. Y. Fang, L. Z. Zhang, and T. Zhang, A random dispersion Schrödinger equation with

time-oscillating nonlinearity, J. Math. Anal. Appl. 418 (2014), no. 1, 403–414.
[20] B. H. Feng, D. Zhao, and C. Y. Sun, The limit behavior of solutions for nonlinear

Schrödinger equation including nonlinear loss/gain with variable coefficient, J. Math.
Anal. Appl. 405 (2013), no. 1, 240–251.

[21] , On the Cauchy problem for the nonlinear Schrödinger equations with time-

dependent linear loss/gain, J. Math. Anal. Appl. 416 (2014), no. 2, 901–923.
[22] G. Fibich and M. Klein, Nonlinear-damping continuation of the nonlinear Schrödinger

equationa numerical study, Phys. D 241 (2012), no. 5, 519–527.
[23] H. Jian and B. Liu, A random Schrödinger equation with time-oscillating nonlinearity

and linear dissipation/gain, Published online in Bull. Malays. Math. Sci. Soc. 2015

(2015), DOI:10.1007/s40840-015-0277-z.
[24] Y. Kagan, A. E. Muryshev, and G. V. Shlyapnikov, Collapse and Bose-Einstein con-

densation in a trapped Bose gas with negative scattering length, Phys. Rev. Lett. 81

(1998), 933–937.
[25] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Phys. Théor. 46

(1987), no. 1, 113–129.
[26] R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random

medium, Commun. Math. Sci. 4 (2006), no. 4, 679–705.
[27] L. X. Meng, J. Y. Li, and J. Tao, Blow-up for the stochastic nonlinear Schrödinger

equations with quadratic potential and additive noise, Bound. Value Probl. 2015 (2015),
18 pp.

[28] M. Ohta and G. Todorova, Remarks on global existence and blow-up for damped non-

linear Schrödinger equations, Discrete Contin. Dyn. Syst. 23 (2009), no. 4, 1313–1325.
[29] T. Passot, C. Sulem, and P. L. Sulem, Linear versus nonlinear dissipation for critical

NLS equation, Phys. D 203 (2005), no. 3-4, 167–184.
[30] M. Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped

nonlinear Schrödinger equations, SIAM J. Math. Anal. 15 (1984), no. 2, 357–366.

Hui Jian

School of Mathematics and Statistics

Hubei Key Laboratory of Engineering Modeling and Scientific Computing

Huazhong University of Science and Technology

Wuhan 430074, Hubei, P. R. China

and

School of Science

East China Jiaotong University

Nanchang 330013, Jiangxi, P. R. China

E-mail address: jianhui0711141@163.com



A RANDOM DISPERSION SCHRÖDINGER EQUATION 1219
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