DOI QR코드

DOI QR Code

Behavior, Survival and Blood Physiological Responses of Red-spotted Grouper Epinephelus akaara, at Different Water Temperature

수온별 붉바리(Epinephelus akaara)의 행동, 생존율 및 혈액생리학적 반응

  • Park, Hyung-Jun (Aquaculture Research Division, National Institute of Fisheries Science) ;
  • Min, Byung Hwa (Aquaculture Research Division, National Institute of Fisheries Science) ;
  • Kim, Sung-Yeon (Aquaculture Research Division, National Institute of Fisheries Science)
  • 박형준 (국립수산과학원 양식관리과) ;
  • 민병화 (국립수산과학원 양식관리과) ;
  • 김성연 (국립수산과학원 양식관리과)
  • Received : 2017.03.17
  • Accepted : 2017.04.11
  • Published : 2017.06.30

Abstract

To determine the optimum water temperature (a temperature which minimizes metabolic activities and stress in fish) for long distance transportation of red-spotted grouper (Epinephelus akaara), by evaluating the behavior, survival and physiological and hematological responses to variable water temperature conditions (9, 12, 15, 18 and $21^{\circ}C$) for 48 hours. Fish exposed to $9^{\circ}C$ died at 48 hours exposure, but those exposed to 12, 15, 18 and $21^{\circ}C$ treatment groups all survived. Fish in the 15, 18 and $21^{\circ}C$ exposure groups exhibited normal swimming, while those exposed to $12^{\circ}C$ were observed to be stationary at the bottom of the tank. The plasma cortisol and glucose concentration were higher in fish exposed to $12^{\circ}C$ than at other temperature conditions. The fish in the 12 and $15^{\circ}C$ groups had significantly higher hematocrit (Ht) and hemoglobin (Hb) than those in the 18 and $21^{\circ}C$ groups (P<0.05). Levels of aspartate aminotransferase (AST), $NH_3$ and osmolality showed a pattern similar to the levels of plasma cortisol, while alanine aminotransferase (ALT) and total protein did not significantly vary among the experimental groups. These results indicate that the optimum water temperature for long distance transportation of the red-spotted grouper is $15^{\circ}C$.

본 연구에서는 붉바리(Epinephelus akaara)의 장거리 수송 시 최적의 수온 (대사활동과 스트레스를 최소화하는 수온)을 조사하고자, 수온별(9, 12, 15, 18 및 $21^{\circ}C$)로 48시간 동안 어체를 노출시켜 어류의 행동 변화, 생존 및 혈액생리학적 반응을 확인하였다. $9^{\circ}C$에 노출된 붉바리는 48시간만에 전량 폐사하였지만, 12 15, 18 및 $21^{\circ}C$의 그룹에서는 모두 생존하였다. 15, 18 및 $21^{\circ}C$의 붉바리는 정상적인 유영활동을 보였으나, $12^{\circ}C$에 노출시킨 붉바리는 유영없이 수조 바닥에 가라앉아 있는 상태를 보였다. 혈장 코티졸 농도와 글루코스는 다른 실험구보다 $12^{\circ}C$에 노출시킨 붉바리에서 더 유의하게 높았다(P<0.05). 12 및 $15^{\circ}C$ 그룹은 18 및 $21^{\circ}C$보다 Ht 및 Hb가 유의한 차이를 보였다(P<0.05). AST, $NH_3$ 및 삼투질 농도는 혈장 코티졸과 비슷한 양상을 보였으나(P<0.05), ALT와 총단백질은 다른 실험구에 비해 유의적인 차이를 보이지 않았다(P>0.05). 이러한 결과로 미루어 볼 때, 붉바리의 장거리 수송을 위한 적정 수온은 $15^{\circ}C$ 임을 시사하고 있다.

Keywords

References

  1. Benli ACK, G Koksal and A Ozkul. 2008. Sublethal ammonia exposure of nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 72:1355-1358. https://doi.org/10.1016/j.chemosphere.2008.04.037
  2. Barton BA and CB Schreck. 1987. Metabolic cost of acute physical stress in juvenile steelhead. Trans. Am. Fish. Soc. 116:257-263. https://doi.org/10.1577/1548-8659(1987)116<257:MCOAPS>2.0.CO;2
  3. Barton BA and GK Iwama. 1991. Physiological change in fish from stress in aquaculture with emphasis in the response and effects of corticosteroids. Annu. Rev. Fish. Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  4. Byrne P, D Speare and HW Ferguson. 1989. Effects of a cationic detergent on the gills and blood chemistry of rainbowtrout (Salmo gairdeneri). Dis. Aquat. Org. 6:195-196.
  5. Cataldi E, P Di Marco, A Mandich and S Cataudella. 1998. Serum parameters of Adriatic sturgeon Acioenser naccarii (Pisces: Acipenseriformes): effects of temperature and stress. Comp. Bioche. Physiol. 121:351-354. https://doi.org/10.1016/S1095-6433(98)10134-4
  6. Chang YJ and JW Hur. 1999. Physiological responses of grey mullet (Mugil cephalus) and Nile tilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. J. Kor. Fish. Soc. 32:313-316.
  7. Choi CY, BH Min, NN Kim, SH Cho and YJ Chang. 2006. Expression of HSP90, HSP70 mRNA and change of plasma cortisol and glucose during water temperature rising in freshwater adapted black porgy, Acanthopagrus schlegli. J. Aquaculture 19:315-322.
  8. Do YH, BH Min, YD Kim and MS Park. 2016. Changes on hematological factors and oxygen consumption of Korean rockfish Sebastes schlegeli in high water temperature. JFMSE 28:738-745. https://doi.org/10.13000/JFMSE.2016.28.3.738
  9. Dosdat A, J Person-Le Ruyet, D Coves, G Dutto, E Gasset, AL Roux and G Lemarie. 2003. Effect of chronic exposure to ammonia on growth, food utilization and metabolism of the European sea bass (Dicentrarchus labrax). Aquat. Living. Resour. 16:509-520. https://doi.org/10.1016/j.aquliv.2003.08.001
  10. Ishioka H. 1980. Stress reactions induced by environmental salinity changes in red-seabream. Bull. Jap. Soc. Sci. Fish. 46:523-532. https://doi.org/10.2331/suisan.46.523
  11. Kim YS, YH Do, BH Min, HK Lim, BK Lee and YJ Chang. 2009. Physiological responses of starry flounder Platichthys stellatus during freshwater acclimination with different speeds in salinity change. J. Aquaculture 22:28-33.
  12. Min BH, GA Noh, MH Jeong, DY Kang, CY Choi, IC Bang and YJ Chang. 2006. Effects of oral administration of thyroid hormone on physiological activity and growth of black porgy reared in freshwater or seawater. J. Aquaculture 19:149-156.
  13. Mommsen TP, MM Vujayan and TW Moon. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 9:211-268. https://doi.org/10.1023/A:1008924418720
  14. Nakagawa H, M Kayama and K Ikuta. 1977. Electrophoretic evidence of seasonal variation of carp plasma albumin. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 16:99-106.
  15. Olsen JE, O Junttila and T Moritz. 1995. A localized decrease of GA1 in shoot tips of Salix pentandra seedings precedes cessation of shoot elongation under short photoperiod. Physiol. Plant. 95:627-632. https://doi.org/10.1111/j.1399-3054.1995.tb05532.x
  16. Ozaki H. 1978. Physiology of fish, Vol. 1, Blood. Circulation. Midori-shobo, Tokyo, pp. 1-326.
  17. Pan CH, YH Chein and B Hunter. 2003. The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin. J. Exp. Mar. Boil. Ecol. 297:107-118. https://doi.org/10.1016/j.jembe.2003.07.002
  18. Park JY, JM Park, CK Hong, KM Kim and JK Cho. 2016. Physiological and biochemical of blood on low temperature stress in seven-band grouper, Epinephelus septemfasciatus. Kor. J. Ichthyol. 28:1-8.
  19. Perry SF and SD Reid. 1993. ${\beta}$-adrenergic signal transportation in fish: interactive effects of catecholamines and cortisol. Fish Physiol. Bioche. 11:195-203. https://doi.org/10.1007/BF00004567
  20. Person-Le Ruyet J, A Lacut, NL Bayon, AL Roux, K Pichavant and L Quemener. 2003. Effects of repeated hypoxic shocks on growth and metabolism of turbot juveniles. Aquat. Living Resour. 16:25-34. https://doi.org/10.1016/S0990-7440(02)00002-5
  21. Randall DJ and TKN Tsui. 2002. Ammonia toxity in fish. Mar. Pollut. Bull. 45:17-23. https://doi.org/10.1016/S0025-326X(02)00227-8
  22. Raune NM, DT Nolan, J Rotllant, L Tort, PHM Balm and SE Wendelaar Bonga. 1999. Moulation of the response of rainbow trout (Onchorhynchus mykiss Walbaum) to confirnement, by an ectoparasitic (Argulus foliaceus L.) infestation and cortisol feeding. Fish Physiol. Bioche. 20:43-51. https://doi.org/10.1023/A:1007744617518
  23. Robert ER. 1992. Biological indicators of stress in fish. American Fish. Trans. Am. Fish. Soc. 121:274-276. https://doi.org/10.1577/1548-8659-121.2.274
  24. Robertson LC, MR Lamb and RT Knight. 1988. Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. J. Neuro. 8:3757-3769. https://doi.org/10.1523/JNEUROSCI.08-10-03757.1988
  25. Santos MA and M Pacheco. 1996. Anguilla anguilla L. Stress biomarkers recovery in clean water and secondary treated pulp mill effluent. Ecotoxico. Environ. Safe. 35:96-100. https://doi.org/10.1006/eesa.1996.0086
  26. Schreck CB. 1982. Stress and rearing of salmonids. Aquaculture 28:241-249. https://doi.org/10.1016/0044-8486(82)90026-6
  27. Vijayan V and CC Tan. 1997. Developing human biliary system in three dimensions. Develop. Biol. 249:389-398.
  28. Vinodhini R and M Narayanan. 2009. The impact of toxic heavy metal son the hematological parametersin common carp (Cyprinuscarpio L.). Iranian J. Environ. Health Sci. Eng. 6:23-28.
  29. Wendelaar Bonga SE. 1997. The stress response in fish. Physiol. Rev. 77:591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  30. Wright PA. 2007. Ionic, osmotic, and nitrogenous waste regulation. Fish Physiol. 26:283-318.
  31. Yanagisawa T and K Hashimoto, 1984. Plasma albumins in elasmobranchs. Nissuishi. 50:1083.
  32. Yang SJ, JY Lee, JC Jun, JI Myeong and BH Min. 2017. Investigation of suitable temperature and salinity for long distance transport of the rockfish Sebastes schlegeli. Kor. J. Fish. Aquat. Sci. 50:25-31.