DOI QR코드

DOI QR Code

공릉천에서의 어류와 저서무척추 동물에 대한 복합 서식처 적합도 지수의 계산

Computation of composite suitability index for fish and macroinvertebrate species in the Gongneung River

  • 투고 : 2017.06.22
  • 심사 : 2017.07.03
  • 발행 : 2017.06.30

초록

본 연구는 공릉천에서 서식하는 어류와 저서무척추 동물을 대상으로 물리서식처 분석을 실시하였다. 연구대상 어류는 밀어와 피라미, 저서무척추 동물 종은 깔따구류와 줄날도래종을 선정하였다. 어류와 저서무척추 동물의 서식처 적합도 지수는 2010년 수생태계 건강성조사 및 평가사업을 통하여 구축된 생태모니터링 자료를 사용하였다. 복합서식처 적합도 지수의 계산은 가중치법을 이용하였으며, 저서무척추 동물의 경우 계층화분석법을 이용하여 산정된 가중치를 적용하였다. 흐름모의는 2차원 흐름모형인 River2D 모형을 사용하였다. 모의 대상하천의 갈수량, 저수량, 평수량, 풍수량에 대하여 어류와 저서무척추 동물의 복합서식처지수의 분포를 모의하였다. 모의결과 깔따구류와 줄날도래는 각각 소와 여울의 서식처를 선호하였으며, 피라미와 밀어는 여울의 서식처를 선호하는 것으로 모의되었다.

This study performed physical habitat simulation for fish and macroinvertebrate species in the Gongneung River. Target fishes were selected as Rhinogobius brunneus and Zacco platypus. Target macroinvertebrate species were selected as Hydropsyche kozhantschikovi and Chironomidae. Habitat suitability curves were constructed by using monitoring data from the monitoring project which is called "the survey and evaluation of aquatic ecosystem health". For calculation of CSI, weighted mean method was used. For macroinvertebrates species, the weighting factor derived from analytic hierarchy method was considered. River2D, which is capable to simulate flow in two-dimensional space, was selected for flow computation. Composite suitability index was simulated for target fish and macroinvertebrate species for discharge of drought, low, normal, and averaged-wet flow. Simulation results show that Chironomidae and Hydropsyche kozhantschikovi prefer the pool and riffle habitat, respectively. Rhinogobius brunneus and Zacco platypus show high suitability in riffle habitat.

키워드

참고문헌

  1. Agouridis, C. T., Wesley, E. T., Sanderson, T. M., and Newton, B. L. 2015. Aquatic Macroinvertebrates: Biological Indicators of Stream Health.
  2. Beisel, J. N., Usseglio-Polatera, P., Thomas, S., and Moreteau, J. C. 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia, 389(1-3), 73-88. https://doi.org/10.1023/A:1003519429979
  3. Brooks, A. J., Haeusler, T. I. M., Reinfelds, I., and Williams, S. 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology, 50(2), 331-344. https://doi.org/10.1111/j.1365-2427.2004.01322.x
  4. Culp, J. M., Walde, S. J., and Davies, R. W. 1983. Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences, 40(10), 1568-1574. https://doi.org/10.1139/f83-181
  5. Duan, X., Wang, Z., and Tian, S. 2008. Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2(1), 122-128. https://doi.org/10.1007/s11783-008-0023-y
  6. Gard, M. 2006. Modeling changes in salmon spawning and rearing habitat associated with river channel restoration 1. International Journal of River Basin Management, 4(3), 201-211. https://doi.org/10.1080/15715124.2006.9635289
  7. Gillenwater, D., Granata, T., and Zika, U. 2006. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecological Engineering, 28(3), 311-323. https://doi.org/10.1016/j.ecoleng.2006.08.003
  8. Gore, J. A., and Judy Jr, R. D. 1981. Predictive models of benthic macroinvertebrate density for use in instream flow studies and regulated flow management. Canadian journal of fisheries and aquatic sciences, 38(11), 1363-1370. https://doi.org/10.1139/f81-183
  9. Gosse. J. C. 1982. Microhabitat of rainbow and cutthroat trout in the Green River below Flaming Gorge Dam. Final report, contract 81 5049. Utah Division of Wildlife Resources, Salt Lake City. p. 114.
  10. Horta, F., Santos, H., Tavares, L., Antunes, M., Pinheiro, P., and Callisto, M. 2009. Assessment of Benthic Macroinvertebrate Habitat Suitability in a Tropical Watershed. In Proceedings of the 7th International Symposium on Ecohydraulics (pp. 170-179).
  11. Im, D., Kang, H., Kim, K. H., and Choi, S. U. 2011. Changes of river morphology and physical fish habitat following weir removal. Ecological Engineering, 37(6), 883-892. https://doi.org/10.1016/j.ecoleng.2011.01.005
  12. Jowett, I. G., and Richardson, J. 1990. Microhabitat preferences of benthic invertebrates in a New Zealand river and the development of in-stream flow-habitat models for Deleatidium spp. New Zealand journal of marine and freshwater research, 24(1), 19-30. https://doi.org/10.1080/00288330.1990.9516399
  13. Jowett, I. G., Richardson, J., Biggs, B. J., Hickey, C. W., and Quinn, J. M. 1991. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. habitat suitability curves, applied to four New Zealand rivers. New Zealand journal of marine and freshwater research, 25(2), 187-199. https://doi.org/10.1080/00288330.1991.9516470
  14. KICT, 2008. The Stream Eco-corridor Restoration and Water Quality Improvement by Weir Removal with its Function Lost. Ministry of Environment (in Korean).
  15. Kil, H. K. 2008. Effects of Dams on Benthic Macroinvertebrate Communities in Korean Streams. Ph. D. Thesis (in Korean).
  16. Kwon, S. J., Jeon, Y. C., and Park, J. H. 2013. Benthic macroinvertebrates. Nature & Ecology, Seoul, pp. 1-791.
  17. Lewis, A., Hatfield, T., Chilibeck, B., and Roberts, C. 2004. Assessment Methods for Aquatic Habitat and Instream Flow Characteristics in Support of Applications to Dam, Divert Or Extract Water from Streams in British Columbia:: Final Version. Ministry of Water, Land & Air Protection; Ministry of Sustainable Resource Management.
  18. Li, F., Cai, Q., Fu, X., and Liu, J. 2009. Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: a case study in Xiangxi River of Three Gorges Reservior region, China. Progress in Natural Science, 19(3), 359-367. https://doi.org/10.1016/j.pnsc.2008.07.011
  19. Ministry of Construction and Transportation. 2012. The basic plan of stream-improvement for Gongreung Stream. The Gyeonggi Province (in Korean).
  20. Nikghalb, S., Shokoohi, A., Singh, V. P., and Yu, R. 2016. Ecological Regime versus Minimum Environmental Flow: Comparison of Results for a River in a Semi Mediterranean Region. Water Resources Management, 30(13), 4969-4984. https://doi.org/10.1007/s11269-016-1488-2
  21. Papadaki, C., Ntoanidis, L., Zogaris, S., Martinez-Capel, F., Munoz-Mas, R., Evelpidou, N., and Dimitriou, E. 2014. Habitat hydraulic modelling for environmental flow restoration in upland streams in Greece. In 12th International Conference on Protection and Restoration of the Environment, 385-392.
  22. Quinn, J. M., and Hickey, C. W. 1990. Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. New Zealand journal of marine and freshwater research, 24(3), 411-427. https://doi.org/10.1080/00288330.1990.9516433
  23. Schwartz, J. S., and Herricks, E. E. 2005. Fish use of stage-specific fluvial habitats as refuge patches during a flood in a low-gradient Illinois stream. Canadian Journal of Fisheries and Aquatic Sciences, 62(7), 1540-1552. https://doi.org/10.1139/f05-060
  24. Stark, J. D. 1993. Performance of the Macroinvertebrate Community Index: effects of sampling method, sample replication, water depth, current velocity, and substratum on index values. New Zealand journal of marine and freshwater research, 27(4), 463-478. https://doi.org/10.1080/00288330.1993.9516588
  25. Steffler, P., and Blackburn, J., 2002. River2D, Two-dimensional Depth Averaged Model of River Hydrodynamics and Fish Habitat. Introduction to Depth Averaged Modeling and User's Manual, University of Alberta.
  26. Tomsic, C. A., Granata, T. C., Murphy, R. P., and Livchak, C. J. 2007. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal. Ecological Engineering, 30(3), 215-230. https://doi.org/10.1016/j.ecoleng.2006.11.006
  27. Wen, X., Fang, G. H., Guo, Y. X., and Zhou, L. 2016. Adapting the operation of cascaded reservoirs on Yuan River for fish habitat conservation. Ecological Modelling, 337, 221-230. https://doi.org/10.1016/j.ecolmodel.2016.06.018
  28. Zhang, W., Di, Z., Yao, W. W., and Li, L. 2016. Optimizing the operation of a hydraulic dam for ecological flow requirements of the You-shui River due to a hydropower station construction. Lake and Reservoir Management, 32(1), 1-12. https://doi.org/10.1080/10402381.2015.1101182