DOI QR코드

DOI QR Code

반응표면분석법을 이용한 자성기반 가중응집제의 응집조건 최적화

Optimizing Coagulation Conditions of Magnetic based Ballast Using Response Surface Methodology

  • 이진실 (한양대학교 건설환경공학과) ;
  • 박성준 (한양대학교 건설환경공학과) ;
  • 김종오 (한양대학교 건설환경공학과)
  • Lee, Jinsil (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Seongjun (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Jong-Oh (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2017.11.22
  • 심사 : 2017.12.15
  • 발행 : 2017.12.31

초록

자성기반 가중응집제를 적용한 새로운 응집/침전법을 정수처리공정에 적용하기 위한 기초연구로써 반응표면분석법(RSM)을 이용하여 반응에 큰 영향을 주는 것으로 알려진 pH, 일반 응집제 사용량, 가중 응집제 사용량에 관한 최적의 반응조건을 도출하고자 하였다. 이때, 일반 응집제는 Poly aluminium chloride (PAC)를 사용하였고 가중응집제는 Magnetite 기반의 자성체를 사용하였으며, Kaolin으로 제조한 합성원수를 Jar-tester를 이용하여 응집실험을 실시하였다. 사전에 Box-Behnken design에 의하여 계획된 17가지 실험조건으로 상기 3개의 독립변수들이 반응변수(탁도 제거율 및 플럭의 평균 침강속도)에 미치는 영향과 최적 반응을 유도하기 위한 독립변수의 최적치를 얻고자 하였다. 실험 후에는 2가지 반응변수의 이차 회귀모델을 도출하였으며, 이를 이용하여 독립변수와 반응변수 간의 상관관계를 도출하고자 반응표면분석을 실시하였다. 반응표면 분석결과 탁도 제거율 및 플럭의 평균 침강속도에 대한 $R^2$값은 0.9909, 0.8295이었고 두 가지 반응변수를 모두 고려한 최적의 반응조건은 pH 7.4, PAC 사용량 38 mg/L, 가중응집제 사용량 1,000 mg/L이었으며 이때 탁도 제거율 97%, 평균 침강속도가 35 m/h 이상의 효율에 도달하였다.

As a fundamental study to apply the new flocculation method using ballast in water treatment process, the optimal conditions for general and ballast coagulant dosage, and pH, which are known to have a significant influence, were derived by response surface methodology. Poly aluminum chloride (PAC) and magnetite ballast were used as a general coagulant and ballast, respectively. Coagulation experiments were performed by jar-tester using the kaolin based synthetic water. The effects of three independent variables (pH, PAC, and ballast) on response variables (turbidity removal rate and average settling velocity of flocs) and the optimum condition of independent variables to induce the optimum flocculation were obtained by 17 experimental conditions designed by Box-Behnken procedure. After performing experiments, the quadratic regression model was derived for each of response variables, and the response surface analysis was conducted to explore the correlation between independent variables and response variables. The $R^2$ values for the turbidity removal rate and the average settling velocity were 0.9909 and 0.8295, respectively. The optimal conditions of independent variables were 7.4 of pH, 38 mg/L of PAC and 1,000 mg/L of ballast. Under these conditions, the turbidity removal rate was more than 97% and the average settling velocity exceeded 35 m/h.

키워드

과제정보

연구 과제 주관 기관 : 환경부

참고문헌

  1. Boo, K. O., Kwon, W. T. and Baek, H. J., "Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change," Geophys. Res. Lett., 33(1), L01701 (2006). https://doi.org/10.1029/2005GL023378
  2. Zhang, M., Xiao, F., Wang, D., Xu, X. and Zhou, Q., "Comparison of novel magnetic polyaluminum chlorides involved coagulation with traditional magnetic seeding coagulation: Coagulant characteristics, treating effects, magnetic sedimentation efficiency and floc properties," Sep. Purif. Technol., 182, 118-127(2017). https://doi.org/10.1016/j.seppur.2017.03.028
  3. Desjardins, C., Koudjonou, B. and Desjardins, R., "Laboratory study of ballasted flocculation," Water Res., 36(3), 744-754(2002). https://doi.org/10.1016/S0043-1354(01)00256-1
  4. Lapointe, M., Brosseau, C., Comeau, Y. and Barbeau, B. "Assessing Alternative Media for Ballasted Flocculation," J. Environ. Eng., 143(11), 04017071(2017). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001271
  5. Cirak, M. and Hosten, C., "Optimization of coagulation-flocculation process for treatment of a colloidal suspension containing dolomite/clay/borax," Int. J. Miner. Process, 159, 30-41(2017). https://doi.org/10.1016/j.minpro.2016.12.007
  6. Ha, S. R. and Lee, S. C., "An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge," J. Korean Soc. Environ. Eng., 35(3), 171-178(2013). https://doi.org/10.4491/KSEE.2013.35.3.171
  7. Lee, Y. J., Lim, J. L., Lee, K. H. and Heo, T. Y., "Optimization of coagulation conditions for the drinking water treatment using a response surface method," J. Korean Soc. Water Sci. Technol., 20(5), 81-89(2012).
  8. Bache, D. H. and Gregory, R., "Flocs in water treatment," IWA Publishing, (2007).
  9. Lee, B. H., Park, S. B. and Kim, M. G., "Optimization of coagulant dosage in Eel farm using response surface methodology," Jour. Wat. Treat., 24(4), 119-129(2016). https://doi.org/10.17640/KSWST.2016.24.4.119
  10. Jeong, S. U., Lee, J. H., Park, T. W. and Kim, Y. M., "Utilization of response surface methodology to optimize a coagulation- flocculation process for tunnel wastewater treatment," J. Korean Soc. Water Wastewater, 28(5), 601-608(2014). https://doi.org/10.11001/jksww.2014.28.5.601
  11. Lee, K. E., Morad, N., Teng, T. T. and Poh, B. T., "Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review," Chem. Eng. J., 203, 370-386(2012) https://doi.org/10.1016/j.cej.2012.06.109
  12. Zhu, T., Heo, H. J. and Row, K. H., "Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology," Carbohydrate Polym., 82(1), 106-110(2010) https://doi.org/10.1016/j.carbpol.2010.04.029
  13. Watson, M. A., Tubic, A., Agbaba, J., Nikic, J., Maletic, S., Jazic, J. M. and Dalmacija, B., "Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process," J. Hazard. Mater., 312, 150-158(2016). https://doi.org/10.1016/j.jhazmat.2016.03.002
  14. Kim, Y. and Oh, J., "Optimization of coagulant dosage using response surface methodology with central composite design," J. Korean Soc. Water Wastewater, 29(2), 193-202(2015). https://doi.org/10.11001/jksww.2015.29.2.193
  15. Trinh, T. K. and Kang, L. S., "Response surface methodological approach to optimize the coagulation-flocculation process in drinking water treatment," Chem. Eng. Res. Des., 89(7), 1126-1135(2011). https://doi.org/10.1016/j.cherd.2010.12.004
  16. Ghafari, S., Aziz, H. A., Isa, M. H. and Zinatizadeh, A. A., "Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum," J. Hazard. Mater., 163(2), 650-656(2009). https://doi.org/10.1016/j.jhazmat.2008.07.090
  17. Nourani, M., Baghdadi, M., Javan, M. and Bidhendi, G. N., "Production of a biodegradable flocculant from cotton and evaluation of its performance in coagulation-flocculation of kaolin clay suspension: optimization through response surface methodology (RSM)," J. Environ. Chem. Eng., 4(2), 1996-2003(2016) https://doi.org/10.1016/j.jece.2016.03.028
  18. Krupa, A. N. D., Abigail, M. E. A., Santhosh, C., Grace, A. N. and Vimala, R., "Optimization of process parameters for the microbial synthesis of silver nanoparticles using 3-level Box-Behnken Design," Ecol. Eng., 87, 168-174(2016). https://doi.org/10.1016/j.ecoleng.2015.11.030
  19. Yoon, C. H., Bok, H. S., Choi, D. K. and Row, K. H., "Optimization condition of astaxanthin extract from shrimp waste using response surface methodology," Korean Chem. Eng. Res., 50(3), 545-550(2012). https://doi.org/10.9713/kcer.2012.50.3.545
  20. Lomax, Richard G., "Statistical Concepts: A Second Course," p.10. ISBN 0-8058-5850-4(2007).
  21. Freitas, T. K. F. S., Oliveira, V. M., De Souza, M. T. F., Geraldino, H. C. L., Almeida, V. C., Favaro, S. L. and Garcia, J. C., "Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant," Ind. Crops Prod., 76, 538-544(2015). https://doi.org/10.1016/j.indcrop.2015.06.027
  22. Han, S. W. and Kang, L. S., "Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment," J. Korean Soc. Environ. Eng., 37(6), 325-331(2015). https://doi.org/10.4491/KSEE.2015.37.6.325