DOI QR코드

DOI QR Code

NaA 형 제올라이트를 이용한 수중의 Sr 이온 제거에서 회분식 및 연속식 운전 특성

Characteristics of Batch and Continuous Operation in Sr ion Removal from Aqueous Solution Using NaA Zeolite

  • 감상규 (제주대학교 환경공학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2017.02.09
  • 심사 : 2017.08.30
  • 발행 : 2017.09.30

초록

NaA 제올라이트 분말(Z-PA) 및 펠렛(Z-BA)를 이용하여 수중의 Sr 이온의 흡착특성을 검토하였다. 회분식 실험에서 Z-BA와 Z-PA에 의한 Sr 이온의 흡착은 유사 1차식보다는 유사 2차식에 잘 부합되었고, 등온 흡착실험 결과는 Langmuir 등온식에 잘 부합하였으며, 이 등온식으로부터 구한 최대 흡착량은 Z-PA는 233.32 mg/g, Z-BA는 164.60 mg/g이었다. 연속식 실험에서 Sr 이온의 농도가 증가함에 따라 Sr 이온의 총 흡착량(q)는 증가하였으나 파과시간, 처리 부피($V_{eff}$) 및 총 제거율(R)은 감소하였다. 실험으로부터 구한 파과곡선은 Thomas 모델식에 의해 잘 모사되었다.

The adsorption characteristics of Sr ion in aqueous solution was examined using zeolite NaA powder (Z-PA) and pellets (Z-BA). In batch experiment, the adsorption of Sr ions by Z-BA and Z-PA was well expressed by pseudo-second-order kinetic model than psedo-first-order kinetic model. Experimental isotherm results was well fitted to Langmuir isotherm model and the maximum adsorption capacities obtained from Langmuir isotherm model were 233.32 mg/g for Z-PA and 164.60 mg/g for Z-BA, respectively. The continuous experiment results showed that the total Sr ion uptake (q) increased, but the breakthrough time, effluent volume ($V_{eff}$) and total removal (R) of Sr ion decreased with the Sr ion concentration. The breakthrough curves obtained from the experiment was modeled by Thomas model.

키워드

참고문헌

  1. Hu, B., Fugetsu, B., Yu, H. and Abe, Y., "Prussian blue caged in spongiform adsorbents using distomite and carbon nanotubes for elimination of cesium," J. Hazard. Mater., 217, 85-91(2012).
  2. Willms, C., Li, Z., Allen, L. and Evans, C. V., "Desorption of cesium from kaolinite and illite using alkylammonium salts," Appl. Clay Sci., 25, 125-133(2004). https://doi.org/10.1016/j.clay.2003.10.001
  3. Sabriye, Y. and Sema, E., "Adsorption characterization of strontium on PAN/Zeolite composite adsorbent," World J. Nucl. Sci. Technol., 1, 6-12(2011). https://doi.org/10.4236/wjnst.2011.11002
  4. Kurbatova, E. I., Ksenofontov, A. I., Dmitriyev, A. M. and Regens, J. L., "Irradiation of sorbents by ions of polymorphic metals for modeling 90strontium sedimentation," Environ. Sci. Pollut. Res. Int., 14(4), 251-255(2007). https://doi.org/10.1065/espr2007.03.403
  5. Singh, B. K., Tomar, R., Tomar, R. and Tomar, S. S., "Sorption of homologues of radionuclides by synthetic ion exchanger," Microporous Mesoporous Mater., 142, 629-640 (2011). https://doi.org/10.1016/j.micromeso.2011.01.006
  6. Yang, W. W., Luo, G. S. and Gong, X. C., "Extraction and separation of metal ions by a column packed with polystyrene microcapsules containing Aliquat 336," Sep. Purif. Technol., 43, 175-182(2005). https://doi.org/10.1016/j.seppur.2004.08.007
  7. Khan, S. A., Rehman, R. and Khan, M. A., "Sorption of strontium on bentonite," Waste Manage., 15(8), 641-650(1995). https://doi.org/10.1016/0956-053X(96)00049-9
  8. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R. and DeMarini, D. M., "Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research," Muta. Res., 636, 178-242(2007). https://doi.org/10.1016/j.mrrev.2007.09.001
  9. Chegrouche, S, Mellah, A. and Barkat, M., "Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies," Desalination, 235(3), 306-318(2009). https://doi.org/10.1016/j.desal.2008.01.018
  10. Smiciklas, I., Dimovic, S. and Plecas, I., "Removal of $Cs^{1+},\;Sr^{2+}\;and\;Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite," Appl. Clay Sci., 35(1), 139-144(2007). https://doi.org/10.1016/j.clay.2006.08.004
  11. El-Kamash, A. M., "Evaluation of zeolite A for the sorptive removal of $Cs^{+}\;and\;Sr^{2+}$ ions from aqueous solutions using batch and fixed bed column operations," J. Hazard. Mater., 151(2), 432-445(2008). https://doi.org/10.1016/j.jhazmat.2007.06.009
  12. Faghihian, H., Iravani, M., Moayed, M. and Ghannadi- Maragheh, M., "Preparation of a novel PAN-zeolite nanocomposite for removal of $Cs^{+}\;and\;Sr^{2+}$ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies," J. Chem. Eng., 222, 41-48(2013). https://doi.org/10.1016/j.cej.2013.02.035
  13. Gulay, M. and Yakup, M., "Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets," J. Chem. Eng., 143(1-3), 133-140(2008). https://doi.org/10.1016/j.cej.2008.01.002
  14. Kim, W. T., Lee, S. O., Yun, Y. H. and Shin, B. S., "Ammonia removal characteristics of artificial zeolite pellet using multi-stage adsorption column.," J. Korean Res. Recycling, 7(1), 20-26(1998).
  15. Juang, R. S. and Shao, H. J., "Effect of pH on competitive adsorption of Cu(II), Ni(II), and Zn(II) from water onto chitosan beads," Adsorption, 8(1), 71-78(2002). https://doi.org/10.1023/A:1015222607996
  16. Silva, J. A. C. and Rodrigues, A. E., "Sorption and diffusion of n-pentane in pellets of 5A zeolite," Eng. Chem. Res., 36 (2), 493-500(1997) https://doi.org/10.1021/ie960477c
  17. Han, S. W., Kim, D. K., Hwang, I. G. and Bae, J. H., "Development of pellet-type adsorbents for removal of heavy metal ions from aqueous solutions using red mud," J. Korean Soc. Atmos. Environ., 8(2), 120-120(2002).
  18. Bhatnagar, A., Vilar, V. J. P., Botelho, C. M. S. and Boaventura, R. A. R., "A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater," Environ. Technol., 32(3), 231-249(2011) https://doi.org/10.1080/09593330.2011.560615
  19. Lee, M. G., Kam, S. K. and Suh, K. H., "Adsorption of nondegradable eosin Y by activated carbon," J. Environ. Sci. Int., 21(5), 623-631(2012). https://doi.org/10.5322/JES.2012.21.5.623
  20. Park, J. M., Kam, S. K. and Lee, M. G., "Adsorption characteristics of lithium ion by zeolite modified in $K^{+},\;Na^{+},\;Mg^{2+},\;Ca^{2+},\;and\;Al^{3+}$ forms," J. Korean Soc. Environ. Eng., 22(12), 1651-1660(2013).
  21. Lagergren, S., "Zur theorie der sogenannten adsorption geloster stoffe kungliga Sevenska Vetenskapasakademiens," Handlingar, 24, 31-39(1898).
  22. Ho, Y. S. and McKay, G., "The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat," Can. J. Chem. Eng., 76, 822-827(1998). https://doi.org/10.1002/cjce.5450760419
  23. Lee, C. H., "Cu and Zn ions adsorption properties at various pH with a synthetic zeolite," J. Korean Soc. Environ. Eng., 21, 805-813(2012).
  24. Lee, C. H., Park, J. M. and Lee, M. G., "Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash," J. Environ. Sci. Int., 23(12), 1987-1998(2014). https://doi.org/10.5322/JESI.2014.23.12.1987
  25. Aksu, Z. and Gonen, F., "Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves," Process Biochem., 39, 599-613(2004). https://doi.org/10.1016/S0032-9592(03)00132-8
  26. Hasana, S. H., Srivastavaa, P. and Talatb, M., "Biosorption of lead using immobilized Aeromonas hydrophila biomass in up flow column system: Factorial design for process optimization," J. Hazard. Mater., 177, 312-322(2010). https://doi.org/10.1016/j.jhazmat.2009.12.034
  27. Thomas, H. C., "Heterogeneous ion exchange in a flowing system," J. Am. Chem. Soc., 66, 1466-1664(1944).