DOI QR코드

DOI QR Code

Identification of the Environmentally Problematic Input/Environmental Emissions and Selection of the Optimum End-of-pipe Treatment Technologies of the Cement Manufacturing Process

시멘트 제조공정의 환경적 취약 투입물/환경오염물 파악 및 최적종말처리 공정 선정

  • Lee, Joo-Young (Department of Environmental and Safety Engineering, Ajou University) ;
  • Kim, Yoon-Ha (Department of Environmental and Safety Engineering, Ajou University) ;
  • Lee, Kun-Mo (Department of Environmental and Safety Engineering, Ajou University)
  • 이주영 (아주대학교 환경안전공학과) ;
  • 김윤하 (아주대학교 환경안전공학과) ;
  • 이건모 (아주대학교 환경안전공학과)
  • Received : 2017.06.19
  • Accepted : 2017.07.28
  • Published : 2017.08.31

Abstract

Process input data including material and energy, process output data including product, co-product and its environmental emissions of the reference and target processes were collected and analyzed to evaluate the process performance. Environmentally problematic input/environmental emissions of the manufacturing processes were identified using these data. Significant process inputs contributing to each of the environmental emissions were identified using multiple regression analysis between the process inputs and environmental emissions. Optimum combination of the end-of-pipe technologies for treating the environmental emissions considering economic aspects was made using the linear programming technique. The cement manufacturing processes in Korea and the EU producing same type of cement were chosen for the case study. Environmentally problematic input/environmental emissions of the domestic cement manufacturing processes include coal, dust, and $SO_x$. Multiple regression analysis among the process inputs and environmental emissions revealed that $CO_2$ emission was influenced most by coal, followed by the input raw materials and gypsum. $SO_x$ emission was influenced by coal, and dust emission by gypsum followed by raw material. Optimization of the end-of-pipe technologies treating dust showed that a combination of 100% of the electro precipitator and 2.4% of the fiber filter gives the lowest cost. The $SO_x$ case showed that a combination of 100% of the dry addition process and 25.88% of the wet scrubber gives the lowest cost. Salient feature of this research is that it proposed a method for identifying environmentally problematic input/environmental emissions of the manufacturing processes, in particular, cement manufacturing process. Another feature is that it showed a method for selecting the optimum combination of the end-of-pipe treatment technologies.

기준공정과 개선대상공정 간의 투입물(Input, Material and energy), 배출물(Output, Product, Co-product), 환경오염물(Environmental emission) 데이터를 수집하고 공정 성과를 분석하였다. 이를 통해 환경적으로 주요한 투입물과 환경오염물을 파악하였다. 제조공정의 투입물과 환경오염물 간의 상관관계 분석을 통해 각 환경오염물에 대한 기여도가 큰 투입물을 파악하였다. 주요 환경오염물 처리 시, 경제적 최적화를 통한 종말처리공정 조합을 선형 프로그래밍 기법을 사용하여 규명하였다. 사례 연구로는 동일한 형태의 시멘트를 생산하는 EU와 국내 시멘트 제조공정을 선정하였다. 국내 시멘트 제조공정에서는 석탄이 주요 투입물로, 먼지, $SO_x$가 주요 환경오염물로 파악되었다. 제조공정의 투입물과 환경오염물 간의 다중회귀분석결과 석탄>원자재>석고 순으로 $CO_2$발생량에 기여도가 큰 것으로 나타났다. $SO_x$발생량의 경우 석탄의 기여도가 가장 컸으며, Dust 발생량의 경우 석고>원자재 순으로 기여도가 큰 것으로 나타났다. Dust 종말처리공정 최적화에서 전기집진기술 100%, 섬유필터기술 2.4% 조합이 최적이었다. $SO_x$종말처리공정 최적화에서는 건식첨가공정기술 100% 습식세정기술 25.88% 조합이 최적이었다. 이 연구의 특징은 제조공정에서 문제가 되는 주요 투입물과 환경오염물을 파악하는 방법을 제시하였다는 점이다. 또한, 기술적 경제적으로 최적의 조합인 종말처리공정 선정 방법을 제시하였다는 점이다.

Keywords

Acknowledgement

Grant : 청정서비스 운영 및 보급 기반구축, 사업장 운전 및 배출정보 분석과 최적 방법론 도출 연구

Supported by : 한국생산기술연구원

References

  1. Korea Evaluation Institute of Industrial Technology, Cleaner Production 3.0, The future of developing cleaner production, KEIT PD Issue Report, Korea(2013).
  2. Green Growth Korea, Green Growth National Strategy : Five-Year Plan, Green Growth committee, Korea(2009).
  3. Deborah, N. H. and Thomas, D. E., "A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies," J. Cleaner Production, 17, 668-675(2009). https://doi.org/10.1016/j.jclepro.2008.04.007
  4. Razuana, R. and Abdul, A. A. R., "Carbon dioxide emission reduction through cleaner production strategies in a recycled plastic resins producing plant," J. Cleaner Product., 141, 1067-1073(2016).
  5. Park, Y. G. and Kim, J.-I., "A study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry," Clean Technol., 16(3), 182-190(2010).
  6. Karkoszka, T., "Minimization of environmental risk by optimization of the end-of-pipe processes," J. Achievements in Mater. and Manufacturing Eng., 49(2), 499-506(2011).
  7. Irina, H., Mohamed, N., Andrew, P., Andrew, P. and Christine, M., "Assessing the impact of cost optimization based on infrastructure modeling on $CO_2$ emissions," Int. J. Product. Economics, 131, 313-321(2011). https://doi.org/10.1016/j.ijpe.2010.03.005
  8. Till M. B. and Jonathan, V. D. K., "Environmental costbenefit analysis and the EU Industrial Emissions Directive: Exploring the societal efficiency of a $DeNO_x$ retrofit at a coal-fired power plant," Energy, 68, 125-139(2014). https://doi.org/10.1016/j.energy.2014.02.051
  9. Gong. S. Y. and Hong. S. P., Comparison of Korea Emission limit values with achievable emission levels in EU BREFs and Case study on Best Available Technique Introduction Cost, Korea Environment Institute, Korea(2013).
  10. Korea National Cleaner Production Center, Industrial technology innovation business [Cleaner service operating & Dissemination base build] annual report, Korea(2016).
  11. Frauke., I. K., Bianca, M. S., Serge, R. and Luis, D. S., Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and control, European Commission Joint Research Centre Institute for prospective technological studies, EU(2013).
  12. Alejandro, J., Antonio, A., Atte, H., Ewan, B. B. and Arnaldo, C., Comparative analysis of available life cycle inventories of cement in the EU, Cement and Concrete Research(2004).
  13. Pre' Consultants bv, SimaPro Software v. 4.0(1997).
  14. Intron, An Overview of Available LCI Data: Cement, Concrete and other Building Materials, Intron Report No. 97079(1997).
  15. Swiss Federal Institute of Technology, Environmental Lifecycle Inventories of Energy Systems An Environmental Database for the Accounting of Energy Inputs in Product Life Cycle Assessment and the Comparative Assessment of Energy Systems, Institute of Energy Technology(1994).
  16. Korea Environmental Industry & Technology Institute (KEITI), The webpage of LCI DB, http://www.epd.or.kr/lci/national_dbView.asp?category=7&idx=121(2002).
  17. Ajou University, A study on analysis of factory input output information and deriving optimization method, annual report, Eco-Product Research Institute, Korea(2016).
  18. Seo, H. S., Regression analysis with Statistical Package for the Social Sciences (SPSS), SPSS academy, Korea(2003).
  19. Lee, T. S., Practical regression analysis using Minitab, Free academy, Korea(2011).
  20. Paul, M. and Patrick, B., Measuring Behaviour: An Introductory Guide: Third Edition, Cambridge University Press, United Kingdom(2007).
  21. Ott, R. L. and Longnecker, M., An Introduction to Statistial Methods & Data Analysis-Seventh edition, CENGAGE Learning, USA(2015).
  22. Samprit, C. and Hadi, A. S., Regression Analysis by Example, Wiley & Sons, USA(2012).
  23. Frederick, S. H. and Gerald, J. L., Introduction to Operation Research Ninth Edition, The Mac Graw Hilll(2010).
  24. United States Environmental Protection Agency, "Technical Bullentin: Nitrogen oxides, Why and how they are controlled," Clean Air Technology Center, USA(1999).