비스무스 기반의 나노선 열전 연구 동향

  • 김정민 (연세대학교 신소재공학과) ;
  • 이우영 (연세대학교 신소재공학과)
  • Published : 2017.06.30

Abstract

Keywords

References

  1. H. J. Goldsmid, Thermoelectric Refrigeration, Plenum Press, New York, 1964.
  2. A. Majumdar, Science, 2004, 303, 777-778. https://doi.org/10.1126/science.1093164
  3. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial and P. Gogna, Adv. Mater., 2007, 19, 1043-1053. https://doi.org/10.1002/adma.200600527
  4. G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105-114. https://doi.org/10.1038/nmat2090
  5. D. M. Rowe, Thermoelectrics Handbook Macro to Nano, CRC Press, Taylor & Francis, 2006.
  6. G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 7436-7439. https://doi.org/10.1073/pnas.93.15.7436
  7. Y. M. Zuev, J. S. Lee, C. Galloy, H. Park and P. Kim, Nano Lett., 2010, 10, 3037-3040. https://doi.org/10.1021/nl101505q
  8. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science, 2008, 321, 554-557. https://doi.org/10.1126/science.1159725
  9. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, Nature, 2008, 451, 163-167. https://doi.org/10.1038/nature06381
  10. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 12727-12731. https://doi.org/10.1103/PhysRevB.47.12727
  11. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, 47, 16631-16634. https://doi.org/10.1103/PhysRevB.47.16631
  12. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin and T. Koga, Phys. Solid State, 1999, 41, 679-682. https://doi.org/10.1134/1.1130849
  13. Y. M. Lin, X. Z. Sun and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 4610-4623. https://doi.org/10.1103/PhysRevB.62.4610
  14. Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying and J. Heremans, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 61, 4850-4861. https://doi.org/10.1103/PhysRevB.61.4850
  15. S. B. Cronin, Ph.D. Thesis, Massachusetts Institute of Technology, 2002.
  16. J. Heremans, C. M. Thrush, Y. M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. F. Mansfield, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 61, 2921-2930. https://doi.org/10.1103/PhysRevB.61.2921
  17. T. W. Cornelius and M. E. T.-. Molares, Nanowires, InTech, Shanghai, 2010.
  18. Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying and J. P. Heremans, Appl. Phys. Lett., 1998, 73, 1589-1591. https://doi.org/10.1063/1.122213
  19. M. R. Black, Y. M. Lin, S. B. Cronin, O. Rabin and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 195417. https://doi.org/10.1103/PhysRevB.65.195417
  20. J. Heremans and C. M. Thrush, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59, 12579-12583. https://doi.org/10.1103/PhysRevB.59.12579
  21. J. P. Heremans, C. M. Thrush, D. T. Morelli and M.-C. Wu, Phys. Rev. Lett., 2002, 88, 216801. https://doi.org/10.1103/PhysRevLett.88.216801
  22. O. Rabin, Y. M. Lin and M. S. Dresselhaus, Appl. Phys. Lett., 2001, 79, 81-83. https://doi.org/10.1063/1.1379365
  23. Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying and M. S. Dresselhaus, Appl. Phys. Lett., 2002, 81, 2403-2405. https://doi.org/10.1063/1.1503873
  24. M. S. Dresselhaus, Y. M. Lin, O. Rabin and G. Dresselhaus, Microscale Thermophys. Eng., 2003, 7, 207-219. https://doi.org/10.1080/10893950390219056
  25. Y.-M. Lin, S. B. Cronin, O. Rabin, J. Y. Ying and M. S. Dresselhaus, Appl. Phys. Lett., 2001, 79, 677-679. https://doi.org/10.1063/1.1385800
  26. A. Nikolaeva, D. Gitsu, L. Konopko, M. J. Graf and T. E. Huber, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 075332. https://doi.org/10.1103/PhysRevB.77.075332
  27. T. E. Huber, A. Adeyeye, A. Nikolaeva, L. Konopko, R. C. Johnson and M. J. Graf, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, 83, 235414. https://doi.org/10.1103/PhysRevB.83.235414
  28. T. E. Huber, A. Nikolaeva, D. Gitsu, L. Konopko, C. A. Foss and M. J. Graf, Appl. Phys. Lett., 2004, 84, 1326-1328. https://doi.org/10.1063/1.1650038
  29. T. E. Huber, A. Nikolaeva, L. Konopko and M. J. Graf, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 79, 201304(R). https://doi.org/10.1103/PhysRevB.79.201304
  30. A. Nikolaeva, T. E. Huber, D. Gitsu and L. Konopko, Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 035422. https://doi.org/10.1103/PhysRevB.77.035422
  31. A. Nikolaeva, D. Gitsu, T. Huber and L. Konopko, Physica B: Condensed Matter, 2004, 346-347, 282-286. https://doi.org/10.1016/j.physb.2004.01.066
  32. L. Konopko, T. Huber and A. Nikolaeva, J. Low Temp. Phys., 2010, 159, 253-257. https://doi.org/10.1007/s10909-009-0097-3
  33. Y. Hasegawa, Y. Ishikawa, H. Shirai, H. Morita, A. Kurokouchi, K. Wada, T. Komine and H. Nakamura, Rev. Sci. Instrum., 2005, 76, 1-4.
  34. Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi and S. Nakamura, J. Electron. Mater., 2009, 38, 944-949. https://doi.org/10.1007/s11664-009-0781-8
  35. M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C. M. Jaworski, V. Jovovic and J. P. Heremans, J. Appl. Phys., 2009, 105, 113706. https://doi.org/10.1063/1.3131842
  36. D. Nakamura, M. Murata, Y. Hasegawa, T. Komine, D. Uematsu, S. Nakamura and T. Taguchi, J. Electron. Mater., 2010, 39, 1960-1965. https://doi.org/10.1007/s11664-009-1045-3
  37. D. Nakamura, M. Murata, H. Yamamoto, Y. Hasegawa and T. Komine, J. Appl. Phys., 2011, 110, 053702. https://doi.org/10.1063/1.3630014
  38. M. Murata, F. Tsunemi, Y. Saito, K. Shirota, K. Fujiwara, Y. Hasegawa and T. Komine, J. Electron. Mater., 2013, 42, 2143-2150. https://doi.org/10.1007/s11664-013-2552-9
  39. A. Boukai, K. Xu and J. R. Heath, Adv. Mater., 2006, 18, 864-869. https://doi.org/10.1002/adma.200502194
  40. W. Shim, J. Ham, K. I. Lee, W. Y. Jeung, M. Johnson and W. Lee, Nano Lett., 2009, 9, 18-22. https://doi.org/10.1021/nl8016829
  41. W. Shim, J. Ham, J. Kim and W. Lee, Appl. Phys. Lett., 2009, 95, 232107. https://doi.org/10.1063/1.3267143
  42. J. Kim, S. Lee, Y. M. Brovman, M. Kim, P. Kim and W. Lee, Appl. Phys. Lett., 2014, 104, 043105. https://doi.org/10.1063/1.4863421
  43. J. Kim, D. Kim, T. Chang and W. Lee, Appl. Phys. Lett., 2014, 105, 123107. https://doi.org/10.1063/1.4896543
  44. J. Kim, S. Lee, Y. M. Brovman, P. Kim and W. Lee, Nanoscale, 2015, 7, 5053-5059. https://doi.org/10.1039/C4NR06412G
  45. E. Shapira, A. Holtzman, D. Marchak and Y. Selzer, Nano Lett., 2012, 12, 808-812. https://doi.org/10.1021/nl2038425
  46. P. Hofmann, Prog. Surf. Sci., 2006, 81, 191-245. https://doi.org/10.1016/j.progsurf.2006.03.001
  47. O. Rabin, Ph.D. Thesis, Massachusetts Institute of Technology, 2004.
  48. F. Y. Yang, K. Liu, K. M. Hong, D. H. Reich, P. C. Searson and C. L. Chien, Science, 1999, 284, 1335-1337. https://doi.org/10.1126/science.284.5418.1335
  49. F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, C. L. Chien, Y. Leprince-Wang, K. Yu-Zhang and K. Han, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 61, 6631-6636. https://doi.org/10.1103/PhysRevB.61.6631
  50. R. T. Isaacson and G. A. Williams, Phys. Rev., 1969, 185, 682-688. https://doi.org/10.1103/PhysRev.185.682
  51. A. J. Levin, M. R. Black and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, 79, 165117. https://doi.org/10.1103/PhysRevB.79.165117
  52. B. S. Chandrasekhar, J. Phys. Chem. Solids, 1959, 11, 268-273. https://doi.org/10.1016/0022-3697(59)90225-2
  53. Z. Zhang, D. Gekhtman, M. S. Dresselhaus and J. Y. Ying, Chem. Mater., 1999, 11, 1659-1665. https://doi.org/10.1021/cm9811545
  54. Z. Zhang, J. Y. Ying and M. S. Dresselhaus, J. Mater. Res., 1998, 13, 1745-1748. https://doi.org/10.1557/JMR.1998.0243
  55. T. E. Huber, M. J. Graf, C. A. Foss and P. Constant, J. Mater. Res., 2000, 15, 1816-1821. https://doi.org/10.1557/JMR.2000.0262
  56. T. E. Huber, K. Celestine and M. J. Graf, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67, 245317. https://doi.org/10.1103/PhysRevB.67.245317
  57. M. Gurvitch, J. Low Temp. Phys., 1980, 38, 777. https://doi.org/10.1007/BF00115503
  58. J. Heremans, C. M. Thrush, Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying and D. T. Morelli, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, 58, R10091-R10095. https://doi.org/10.1103/PhysRevB.58.R10091
  59. D. Gitsu, L. Konopko, A. Nikolaeva and T. E. Huber, Appl. Phys. Lett., 2005, 86, 102105. https://doi.org/10.1063/1.1873045
  60. A. Nikolaeva, A. Burchakov, E. Condrea and D. Gitsu, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process., 2000, 288, 298-302. https://doi.org/10.1016/S0921-5093(00)00847-9
  61. J. Ham, W. Shim, D. H. Kim, K. H. Oh, P. W. Voorhees and W. Lee, Appl. Phys. Lett., 2011, 98, 043102. https://doi.org/10.1063/1.3535956
  62. J. W. Roh, K. Hippalgaonkar, J. H. Ham, R. K. Chen, M. Z. Li, P. Ercius, A. Majumdar, W. Kim and W. Lee, Acs Nano, 2011, 5, 3954-3960. https://doi.org/10.1021/nn200474d
  63. R. Hartman, Phys. Rev., 1969, 181, 1070-1086. https://doi.org/10.1103/PhysRev.181.1070
  64. N. Garcia and Y. H. Kao, Phys. Lett. A, 1968, 26, 373-374. https://doi.org/10.1016/0375-9601(68)90381-2
  65. O. P. Hansen and I. F. I. Mikhail, Phys. Status Solidi B, 1984, 126, 721-728. https://doi.org/10.1002/pssb.2221260232
  66. Y. M. Zuev, W. Chang and P. Kim, Phys. Rev. Lett., 2009, 102, 096807. https://doi.org/10.1103/PhysRevLett.102.096807
  67. G. Chen, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, 57, 14958-14973. https://doi.org/10.1103/PhysRevB.57.14958
  68. A. L. Moore, M. T. Pettes, F. Zhou and L. Shi, J. Appl. Phys., 2009, 106, 034310-034317. https://doi.org/10.1063/1.3191657
  69. C. F. Gallo, B. S. Chandrasekhar and P. H. Sutter, J. Appl. Phys., 1963, 34, 144-152. https://doi.org/10.1063/1.1729056
  70. C. Uher and H. J. Goldsmid, Phys. Status Solidi B, 1974, 65, 765-772. https://doi.org/10.1002/pssb.2220650237
  71. J. Kim, W. Shim, W. Lee, J. Mater. Chem. C, 2015, 3, 11999-12013. https://doi.org/10.1039/C5TC02886H