DOI QR코드

DOI QR Code

In Silico Signature Prediction Modeling in Cytolethal Distending Toxin-Producing Escherichia coli Strains

  • Javadi, Maryam (Department of Molecular Biology, Pasteur Institute of Iran) ;
  • Oloomi, Mana (Department of Molecular Biology, Pasteur Institute of Iran) ;
  • Bouzari, Saeid (Department of Molecular Biology, Pasteur Institute of Iran)
  • Received : 2017.04.28
  • Accepted : 2017.05.09
  • Published : 2017.06.30

Abstract

In this study, cytolethal distending toxin (CDT) producer isolates genome were compared with genome of pathogenic and commensal Escherichia coli strains. Conserved genomic signatures among different types of CDT producer E. coli strains were assessed. It was shown that they could be used as biomarkers for research purposes and clinical diagnosis by polymerase chain reaction, or in vaccine development. cdt genes and several other genetic biomarkers were identified as signature sequences in CDT producer strains. The identified signatures include several individual phage proteins (holins, nucleases, and terminases, and transferases) and multiple members of different protein families (the lambda family, phage-integrase family, phage-tail tape protein family, putative membrane proteins, regulatory proteins, restriction-modification system proteins, tail fiber-assembly proteins, base plate-assembly proteins, and other prophage tail-related proteins). In this study, a sporadic phylogenic pattern was demonstrated in the CDT-producing strains. In conclusion, conserved signature proteins in a wide range of pathogenic bacterial strains can potentially be used in modern vaccine-design strategies.

Keywords

References

  1. Lara-Tejero M, Galan JE. Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 2002;10:147-152. https://doi.org/10.1016/S0966-842X(02)02316-8
  2. Toth I, Nougayrede JP, Dobrindt U, Ledger TN, Boury M, Morabito S, et al. Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun 2009;77:492-500. https://doi.org/10.1128/IAI.00962-08
  3. Lara-Tejero M, Galan JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 2000;290:354-357. https://doi.org/10.1126/science.290.5490.354
  4. Agren J, Sundstrom A, Hafstrom T, Segerman B. Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One 2012;7:e39107. https://doi.org/10.1371/journal.pone.0039107
  5. Rokas A, Williams BL, King N, Carroll SB. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 2003;425:798-804. https://doi.org/10.1038/nature02053
  6. Dubchak I, Poliakov A, Kislyuk A, Brudno M. Multiple whole-genome alignments without a reference organism. Genome Res 2009;19:682-689. https://doi.org/10.1101/gr.081778.108
  7. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus: algorithms for genome multiple sequence alignment. Genome Res 2011;21:1512-1528. https://doi.org/10.1101/gr.123356.111
  8. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004;14:708-715. https://doi.org/10.1101/gr.1933104
  9. Rausch T, Emde AK, Weese D, Doring A, Notredame C, Reinert K. Segment-based multiple sequence alignment. Bioinformatics 2008;24:i187-i192. https://doi.org/10.1093/bioinformatics/btn281
  10. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009;25:2071-2073. https://doi.org/10.1093/bioinformatics/btp356
  11. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147. https://doi.org/10.1371/journal.pone.0011147
  12. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004;14:1394-1403. https://doi.org/10.1101/gr.2289704
  13. Kloepper TH, Huson DH. Drawing explicit phylogenetic networks and their integration into SplitsTree. BMC Evol Biol 2008;8:22. https://doi.org/10.1186/1471-2148-8-22
  14. Lukjancenko O, Wassenaar TM, Ussery DW. Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 2010;60:708-720. https://doi.org/10.1007/s00248-010-9717-3
  15. Gardner SN, Hall BG. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS One 2013;8:e81760. https://doi.org/10.1371/journal.pone.0081760
  16. Asakura M, Hinenoya A, Alam MS, Shima K, Zahid SH, Shi L, et al. An inducible lambdoid prophage encoding cytolethal distending toxin (Cdt-I) and a type III effector protein in enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2007;104:14483-14488. https://doi.org/10.1073/pnas.0706695104
  17. Johnson WM, Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb Pathog 1988;4:103-113. https://doi.org/10.1016/0882-4010(88)90052-6
  18. Kim JH, Kim JC, Choo YA, Jang HC, Choi YH, Chung JK, et al. Detection of cytolethal distending toxin and other virulence characteristics of enteropathogenic Escherichia coli isolates from diarrheal patients in Republic of Korea. J Microbiol Biotechnol 2009;19:525-529. https://doi.org/10.4014/jmb.0801.033
  19. Oloomi M, Bouzari S. Molecular profile and genetic diversity of cytolethal distending toxin (CDT)-producing Escherichia coli isolates from diarrheal patients. APMIS 2008;116:125-132. https://doi.org/10.1111/j.1600-0463.2008.00910.x
  20. Edwards DJ, Holt KE. Beginner's guide to comparative bacterial genome analysis using next-generation sequence data. Microb Inform Exp 2013;3:2. https://doi.org/10.1186/2042-5783-3-2