DOI QR코드

DOI QR Code

Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent

실란 커플링제를 이용하여 개질한 할로이사이트 나노튜브가 함유된 에폭시 조성물의 열적·기계적 물성

  • Kim, TaeHee (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Lim, Choong-Sun (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin Chul (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology) ;
  • Seo, Bongkuk (Center for Chemical Industry Development, Korea Research Institute of Chemical Technology)
  • 김태희 (한국화학연구원 화학산업고도화센터) ;
  • 임충선 (한국화학연구원 화학산업고도화센터) ;
  • 김진철 (한국화학연구원 화학산업고도화센터) ;
  • 서봉국 (한국화학연구원 화학산업고도화센터)
  • Received : 2017.05.03
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

Epoxy resins are widely used in various fields due to their excellent thermal, mechanical and chemical properties. In order to improve the mechanical properties of the epoxy composition after curing, various materials are mixed in the epoxy resin. Among the nano materials, CNT is the most widely used. However, CNT has limitations in terms of manufacturing process and manufacturing cost. Therefore, there is a growing interest in naturally occurring HNTs having similar structure to that of CNT. In this study, the thermal and mechanical properties of epoxy compositions containing HNTs treated with two types of silane compounds were investigated. The mechanical properties of silane-treated HNT were measured by using a universal testing machine. The differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used to measure thermal properties. As a result of the above tests, when the HNT was surface-treated with aminosilane, the tensile strength of the epoxy composition containing the HNT was higher than that of the epoxy composition containing epoxy silane treated HNT. The linear thermal expansion coefficients (CTE) obtained from the thermomechanical analysis of the two epoxy compositions for the comparison of dimensional stability showed that the HNT composition treated with aminosilane showed a lower value of CTE than that of epoxy composition including the pristine HNT.

에폭시 수지는 우수한 열적, 기계적, 화학적 성질로 인해 다양한 분야에서 널리 사용되고 있으며, 에폭시 수지의 기계적 물성을 향상시키기 위한 많은 소재와 함께 혼합하여 사용하고 있다. 에폭시 조성물의 경화 후 기계적 물성의 향상을 위해서 에폭시 수지에 다양한 소재를 혼합하는데, 나노소재중에서는 CNT가 가장 많이 사용되고 있다. 하지만 CNT는 제조 공정 및 제조 비용적인 측면에서 한계점이 있기 때문에 천연적으로 산출되는 HNT에 대한 관심이 모아지고 있다. 본 연구에서는 두 종류의 실란으로 각각 처리된 HNT가 함유된 에폭시 조성물의 열적 기계적 물성에 대해서 조사하였다. 실란처리 된 HNT를 다양한 함량으로 제조하여 에폭시 조성물에 첨가한 후 금형몰드에서 경화시키고 만능재료시험기를 이용하여 기계적 물성을 측정하였으며, differential scanning calorimeter (DSC) thermogravimetric analysis (TGA) thermomechanical Analysis (TMA) 등의 장비를 이용하여 다양한 열적 특성을 측정하였다. 위의 실험 결과, 두 종류의 실란 화합물 중 아민으로 HNT를 표면 처리하였을 경우, 이를 포함하는 에폭시 조성물의 인장강도가 에폭시 실란으로 처리된 HNT를 포함하는 에폭시 조성물 보다 높은 것을 보였다. 또한 치수 안정성 비교를 위한 thermomechanical analysis 실험에서 얻은 선형 열팽창계수는 아민계 실란으로 처리한 HNT 조성물이 65 ppm으로 처리하지 않은 HNT 보다 낮은 값을 갖는 것을 보였다.

Keywords

References

  1. Zhang, B. L, Tang, G. L, Shi, K. Y., You, Y. C., Du, Z. J., Yang, J. F., and Huang, J., "A study on Properties of Epoxy Resin Toughened by Functionalized Polymer Containing Rigid, Rod-like Moiety", European Polym. J., 36, 205-213 (2000). https://doi.org/10.1016/S0014-3057(99)00032-4
  2. R. S. Bauer, "Epoxy Resin Chemistry", AGS Advances in Chemistry Series No. 114, American Chemical Society, (1979).
  3. A. Zotti, A. Borriello, A. Martone, V. Antonucci, M. Giordano, M. Zarrelli, "Effect of sepiolite filler on mechanical behavior of a bisphenol A-based epoxy system", Composites:Part B. Eng., 67, 400-409 (2014). https://doi.org/10.1016/j.compositesb.2014.07.017
  4. V. Kushvaha, H. Tippur, "Effect of filler shape, volume fraction and loading rate on dynamic fracture behavior of glass-filled epoxy", Composites:Part B. Eng., 64, 126-137 (2014). https://doi.org/10.1016/j.compositesb.2014.04.016
  5. M. Harada, N. Hamura, M. Chi, Y. Agari, "Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure", Composites:Part B. Eng., 55, 306-313 (2013). https://doi.org/10.1016/j.compositesb.2013.06.031
  6. Hussain F, Hojjati M, Okamoto M, Gorga RE, "Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview", J. Compos Mater., 40, 1511-1575 (2006). https://doi.org/10.1177/0021998306067321
  7. Gorga RE, Cohen RE, J. Polym Sci Part B: "Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotubes", Polymer Phys., 42, 2690-2702 (2004). https://doi.org/10.1002/polb.20126
  8. Cadek M, Coleman JN, Barron B, Hedicke K, Blau WJ, "Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites", Appl Phys Lett., 81, 5123-5125 (2002). https://doi.org/10.1063/1.1533118
  9. Y. Tang, S. Deng, L. Ye, C. Yang, Q. Yuan, J. Zhang, C. Zhao, "Effects of unfolded and intercalated halloysites on mechanical properties of halloysite-epoxy nanocomposites", Composites: Part A 42, 345-354 (2011). https://doi.org/10.1016/j.compositesa.2010.12.003
  10. M.T. Albdiry, B. F. Yousif, "Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes", Materials and Design 48, 68-76 (2013). https://doi.org/10.1016/j.matdes.2012.08.035
  11. Y. Ye, H. Chen, J. Wu, L. Ye, "High impact strength epoxy nanocomposites with natural nanotubes", Polymer 48, 6426-6433 (2007). https://doi.org/10.1016/j.polymer.2007.08.035
  12. S. Deng, J. Zhang, L. Ye, J. Wu, "Toughening epoxies with halloysite nanatubes", Polymer 49, 5119-5127 (2008). https://doi.org/10.1016/j.polymer.2008.09.027
  13. Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ. "Functionalization of halloysite clay nanotubes by grafting with $\gamma$-aminopropyltriethoxysilan", J. Phys Chem C., 112, 15742-51 (2008).
  14. Liu MX, Guo BC, Du ML, Lei YD, Jia DM. "Natural inorganic nanotubes reinforced epoxy resin nanocomposites", J. Polym Res., 15, 205-212 (2008). https://doi.org/10.1007/s10965-007-9160-4
  15. Li C, Liu J, Qu X, Guo B, Yang Z. "Polymer-modified halloysite composite nanotubes", J. Appl Polym Sci., 110, 3638-3646 (2008). https://doi.org/10.1002/app.28879
  16. Li C, Liu J, Qu X, Yang Z. "A general synthesis approach toward halloysite based composite nanotube," J. Appl Polym Sci., 112, 2647-2655 (2009). https://doi.org/10.1002/app.29652
  17. Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, KepertCJ. "Functionalization of halloysite clay nanotubes by grafting with $\gamma$ -aminopropyltriethoxysilane", J. Phys. Chem. C., 112, 15742-15751 (2008).
  18. Haroosh H, Dong Y, Chaudhary D, Ingram G, Yusa SI. "Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nano-tubes (HNT)", Appl Phys A., 110, 433-442 (2013).
  19. Yah WO, Takahara A, Lvov YM. "Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubularmicelle", J. American Chem. Soc., 134, 1853- 1859 (2012). https://doi.org/10.1021/ja210258y
  20. Luo P, Zhang JS, Zhang B, Wang JH, Zhao YF, Liu JD. "Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal", Ind Eng Chem Res., 50:10246-10252 (2011). https://doi.org/10.1021/ie200951n
  21. J. Chu, E. Lee, and S. Choi, "Influences of liquid rubber on the surficial and mechanical properties of epoxy composites", Elastomer, 43, 2, 113-123 (2008).
  22. D. Kim, S. Kim, Y.-I. Park, Y. C. Kim, and C.-S. Lim, "The physical and thermal properties analysis of the VOC free composites comprised of epoxy resin, and dicyandiamide", J. of Adhesion and Interface, 21, 76-82 (2014).
  23. X. D., Kimura, M., Sudo, A., and Endo, T., "Accelerating effects of N-aryl-N',N'-dialkyl Ureas on Epoxy-dicyandiamide Curing System", J. Polym. Sci., Part A: Polym. Chem., 48, 5298-5305 (2010). https://doi.org/10.1002/pola.24329