DOI QR코드

DOI QR Code

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area

초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석

  • Received : 2017.01.17
  • Accepted : 2017.04.26
  • Published : 2017.05.01

Abstract

RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

본 연구에서는 초음속 영역에서의 해머헤드형 노즈 페어링을 포함하고 있는 발사체 선두부에 대한 RANS 전산해석을 수행하였다. 층류, 완전 난류, 천이 모델을 이용한 2차원 축대칭 해석을 수행하여 실험 결과와 비교하였다. 레이놀즈수의 변화에 따라서 다른 유동현상이 나타남을 확인하였다. 높은 레이놀즈수에서는 경계층이 난류가 되어 발사체 표면에서 박리가 되지 않는다. 낮은 레이놀즈수 조건에서는 해머헤드형 노즈 페어링의 팽창-압축 모서리에서 경계층의 박리와 재부착으로 층류 박리 거품이 만들어진다. 받음각이 있는 3차원 계산에서 층류 박리 거품으로 발생되는 와류 구조를 확인할 수 있었다. 레이놀즈수에 따른 박리 거품을 예측하기 위해서 난류 천이를 고려해야 함을 확인할 수 있었다.

Keywords

References

  1. Selvi Rajan, S., Santhoshkumar, M., Lakshmanan, N., Nadaraja Pillai, S., and Paramasivam, M., "CFD Analysis and Wind Tunnel Experiment on a Typical Launch Vehicle Model," Tamkang Journal of Science and Engineering, Vol. 12, No. 3, 2009, pp. 223-229.
  2. Bigarella, E. D. V., Azevedo, J. L. F., and Mello, O. A. F., "Normal force calculations for rocket-like configurations," Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 26, No. 3, 2004, pp. 290-296.
  3. Zdravistch F., and Azevedo J. L. F., "Numerical simulation of high speed flows over complex satellite launchers," Proc 3rd Brazilian Thermal Sciences Meeting ENCIT 90, 1990, pp. 233-238.
  4. Langone, K., and Bermudez, L., "Use of CFD to Rapidly Characterize Aerodynamics for a Hammerhead Launch Vehicle," 27th AIAA Applied Aerodynamics Conference, 2009, pp. 3513.
  5. Ericsson, L. E., and Reding, J. P., "Analysis of flow separation effects on the dynamics of a large space booster," Journal of Spacecraft and Rockets, Vol. 2, No. 4, 1965, pp. 481-490. https://doi.org/10.2514/3.28216
  6. Moraes Jr, P., and Neto, A. A., "Aerodynamic experimental investigation of the brazilian satellite launch vehicle (VLS)," In Proceedings of the 3rd Brazilian Thermal Sciences Meeting, Vol. 1, 1990, pp. 211-215.
  7. Azevedo, J. L. F., Moraes Jr, P., Maliska, C. R., Marchi, C. H., and Silva, A. F. C., "Code validation for high-speed flow simulation over satellite launch vehicle," Journal of Spacecraft and Rockets, Vol. 33, No. 1, 1996, pp. 15-21. https://doi.org/10.2514/3.55701
  8. Azevedo, J. L. F., Zdravistch, F., and Silva, A. F. C., "Implementation and validation of Euler solvers for launch vehicle Flows," Proceedings of the Fourth International Symposium on Computational Fluid Dynamics, Vol. 1, 1991, pp. 42-47.
  9. Bigarella, E. D. V., and Azevedo, J. L. F. "A Unified Implicit CFD Approach for Turbulent-Flow Aerospace - Configuration Simulations," In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009, pp. 1473.
  10. Bigarella, E. D. V., and Azevedo, J. L. F., "Blunt - Body flow simulations with Advanced eddy-viscosity and reynolds - stress turbulence closures," 19th International Congress of Mechanical Engineering, 2007.
  11. Roe, P. L., "Approximate Riemann solvers, parameter vectors, and difference schemes," Journal of computational physics, Vol. 43, No. 2, 1981, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  12. Park, S. H., and Kwon, J. H., "Implementation of k-${\omega}$ turbulence models in an implicit multigrid method," AIAA journal, Vol. 42, No. 7, 2004, pp. 1348-1357. https://doi.org/10.2514/1.2461
  13. Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal, Vol. 32, No.8, 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149
  14. Langtry, R. B., and Menter, F. R., "Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes," AIAA journal, Vol. 47, No. 12, 2009, pp. 2894-2906. https://doi.org/10.2514/1.42362
  15. Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G., and Volker, S., "A correlation-based transition model using local variables-Part I: model formulation," Journal of turbo machinery, Vol. 128, No. 3, 2006, pp. 413-422. https://doi.org/10.1115/1.2184352