DOI QR코드

DOI QR Code

동작 상상 EEG 분류를 위한 이중 filter-기반의 채널 선택

A Dual Filter-based Channel Selection for Classification of Motor Imagery EEG

  • 이다빛 (가톨릭대학교 미디어공학) ;
  • 이희재 (가톨릭대학교 미디어공학) ;
  • 박상훈 (가톨릭대학교 미디어공학) ;
  • 이상국 (가톨릭대학교 미디어기술콘텐츠학과)
  • 투고 : 2017.01.03
  • 심사 : 2017.07.12
  • 발행 : 2017.09.15

초록

뇌-컴퓨터 인터페이스는 정신 작업 동안 다채널에서 생성된 뇌파의 신호를 측정, 분석하여 컴퓨터를 제어하거나 의사를 전달하는 기술이다. 이때 최적의 뇌파 채널 선택은 뇌-컴퓨터 인터페이스의 편의성과 속도뿐만 아니라 정확도 향상을 위해 필요하다. 최적의 채널은 중복 채널들 또는 노이즈 채널들을 제거함으로써 얻는다. 이 논문에서는 최적 뇌파 채널을 선택하기 위해 이중 filter-기반의 채널 선택 방법을 제안한다. 제안한 방법은 먼저 채널들 간의 중복성을 제거하기 위해 spearman's rank correlation을 사용하여 중복 채널들을 제거한다. 그 뒤, F score를 이용하여 채널과 클래스 라벨 간의 적합성을 측정하여 상위 m개의 채널들만을 선택한다. 제안한 방법은 클래스 라벨과 관련되고 중복이 없는 채널들을 사용함으로써 좋은 분류 정확도를 이끌어 낼 수 있다. 제안한 채널 선택 방법은 채널의 수를 상당히 줄임과 동시에 평균 분류 정확도를 향상시켰다.

Brain-computer interface (BCI) is a technology that controls computer and transmits intention by measuring and analyzing electroencephalogram (EEG) signals generated in multi-channel during mental work. At this time, optimal EEG channel selection is necessary not only for convenience and speed of BCI but also for improvement in accuracy. The optimal channel is obtained by removing duplicate(redundant) channels or noisy channels. This paper propose a dual filter-based channel selection method to select the optimal EEG channel. The proposed method first removes duplicate channels using Spearman's rank correlation to eliminate redundancy between channels. Then, using F score, the relevance between channels and class labels is obtained, and only the top m channels are then selected. The proposed method can provide good classification accuracy by using features obtained from channels that are associated with class labels and have no duplicates. The proposed channel selection method greatly reduces the number of channels required while improving the average classification accuracy.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Betts Peters, "Brain-Computer Interface Users Speak Up: The Virtual Users' Forum at the 2013 International Brain-Computer Interface Meeting," Archives of Physical Medicine and Rehabilitation, Vol. 96, No. 3, pp. 33-37, Mar. 2015.
  2. David E Thompson, "Performance assessment in brain-computer interface-based augmentative and alternative communication," Biomedical engineering online, Vol. 12, No. 1, May. 2013.
  3. L. David, L. Hee-Jae, L, Sang-Goog, "Motor Imagery EEG Classification Method using EMD and FFT," Korean Institute of Information Scientists and Engineers, Vol. 41, No. 12, pp. 1050-1057, 2014. (in Korean)
  4. Y. Yang, I. Bloch, S. Chevallier, et al., "Subject-Specific Channel Selection using Time Information for Motor Imagery Brain-Computer Interfaces," Cognitive Computation, Springer, Vol.8, No. 3, pp. 505-518, Jan. 2016. https://doi.org/10.1007/s12559-015-9379-z
  5. A. Yuksel, T. Olmez, "A neural network-based optimal spatial filter design method for motor imagery classification," PLoS One, Vol. 10, No. 5, 2015.
  6. Aboul Ella Hassanien, Ahmad Taher Azar, Brain-Computer Interfaces: Current Trends and Applications, Springer, Nov. 2014.
  7. K. Thomas, C. Guan, C. Lau, A. Vinod, and K. Ang, "A new discriminative common spatial pattern method for motor imagery brain-Computer interfaces," IEEE Transactions on Biomedical Engineering, Vol. 56, No. 11, pp. 2730-2733, Nov. 2009. https://doi.org/10.1109/TBME.2009.2026181
  8. N. Brodua, F. Lotteb, A. Lecuyerd, "Exploring two novel features for EEG-based brain-computer interfaces: multifractal cumulants and predictive complexity," Neurocomputing, Vol. 79, No. 1, pp. 87-94, 2012. https://doi.org/10.1016/j.neucom.2011.10.010
  9. D. Looney, P. Kidmose, M. J. Morrell, D. P. Mandic, Ear-EEG: Continuous Brain Monitoring, Springer, pp. 63-71, Nov. 2014.
  10. T. Alotaiby, F. E Abd El-Samie, S.A Alshebeili, I. Ahmadm, "A review of channel selection algorithms for EEG signal processing," EURASIP Journal on Advances in Signal Processing, Vol. 66, pp. 1-21, Dec. 2015.
  11. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe and K. R. Muller, "Optimizing spatial filters for robust EEG single-trial analysis," IEEE Signal Processing Magazine, Vol. 25, No. 1, pp. 41-56, 2008. https://doi.org/10.1109/MSP.2008.4408441
  12. T. Lan, D. Erdogmus, A. Adami, M. Pavel, and S. Mathan, "Salient EEG channel selection in brain computer interfaces by mutual information maximization," Proc. of the 2005 IEEE Engineering in Medicine and Biology 27th annual conference, Shanghai, China, pp. 7064-7067, Sep. 2005.
  13. E. L. Glassman and J. V. Guttag, "Reducing the Number of Channels for an Ambulatory Patient-Specific EEG-based Epileptic Seizure Detector by Applying Recursive Feature Elimination," 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, pp. 2175-2178, 2006.
  14. M. Deriche and A. Al-Ani, "A new algorithm for EEG feature selection using mutual information," Proc. of the IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 1057-1060, May. 2001.
  15. T.N. Lal, M. Schroder, T. Hinterberger et al., "Support vector channel selection in BCI," IEEE Transactions on Biomedical Engineering, Vol. 51, no. 6, pp. 1003-1010, May. 2004. https://doi.org/10.1109/TBME.2004.827827
  16. M. Miao, H. Zeng, A. Wang, C. Zhao, F. Liu, "Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naive Bayesian Classifier-based approach," Journal of Neuroscience Methods, Vol. 278, pp. 13-24, Feb, 2017. https://doi.org/10.1016/j.jneumeth.2016.12.010
  17. Sanchez-Marono N, Alonso-Betanzos A, Tombilla-Sanroman M, "Filter methods for feature selection: a comparative study," Proc. of the 8th international conference on intelligent data engineering and automated learning, pp. 178-187, 2007.
  18. I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, Vol. 3, pp. 1157-1182, 2003.
  19. Z.J. Koles, M.S. Lazar, S.Z. Zhou, "Spatial patterns underlying population differences in the background EEG," Brain Topography, Vol. 2, No. 4, pp. 275-284, Jun. 1990. https://doi.org/10.1007/BF01129656
  20. F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, B. Arnaldi, "A review of classification algorithms for EEG-based brain-computer interfaces," Journal of Neural Engineering, Vol. 4, No. 2, pp. 1-13, 2007. https://doi.org/10.1088/1741-2560/4/2/001
  21. S. H. Park and S. G. Lee, "Small Sample Setting and Frequency Band Selection Problem Solving Using Subband Regularized Common Spatial Pattern," IEEE Sensors Journal, Vol. 17, No. 10, pp. 2977-2983, May, 2017. https://doi.org/10.1109/JSEN.2017.2671842