DOI QR코드

DOI QR Code

동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴

Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG

  • 박상훈 (가톨릭대학교 미디어공학) ;
  • 김하영 (가톨릭대학교 미디어공학) ;
  • 이다빛 (가톨릭대학교 미디어공학) ;
  • 이상국 (가톨릭대학교 미디어기술콘텐츠학과)
  • 투고 : 2017.01.09
  • 심사 : 2017.04.10
  • 발행 : 2017.06.15

초록

최근, 동작 상상(Motor Imagery) Electroencephalogram(EEG)를 기반으로 한 Brain-Computer Interface(BCI) 시스템은 의학, 공학 등 다양한 분야에서 많은 관심을 받고 있다. Common Spatial Pattern(CSP) 알고리즘은 동작 상상 EEG의 특징을 추출하기 위한 가장 유용한 방법이다. 그러나 CSP 알고리즘은 공분산 행렬에 의존하기 때문에 Small-Sample Setting(SSS) 상황에서 성능에 한계가 있다. 또한 사용하는 주파수 대역에 따라 큰 성능 차이를 보인다. 이러한 문제를 동시에 해결하기 위해, 4-40Hz 대역 EEG 신호를 9개의 필터 뱅크를 이용하여 분할하고 각 밴드에 Regularized CSP(R-CSP)를 적용한다. 이후 Mutual Information-Based Individual Feature(MIBIF) 알고리즘은 R-CSP의 차별적인 특징을 선택하기 위해 사용된다. 본 연구에서는 대뇌 피질의 운동영역 부근 18개 채널을 사용하여 BCI CompetitionIII DatasetIVa의 피험자 다섯 명(aa, al, av, aw 및 ay)에 대해 각각 87.5%, 100%, 63.78%, 82.14% 및 86.11%의 정확도를 도출하였다. 제안된 방법은 CSP, R-CSP 및 FBCSP 방법보다 16.21%, 10.77% 및 3.32%의 평균 분류 정확도 향상이 있었다. 특히, 본 논문에서 제안한 방법은 SSS 상황에서 우수한 성능을 보였다.

Recently, motor imagery electroencephalogram(EEG) based Brain-Computer Interface(BCI) systems have received a significant amount of attention in various fields, including medicine and engineering. The Common Spatial Pattern(CSP) algorithm is the most commonly-used method to extract the features from motor imagery EEG. However, the CSP algorithm has limited applicability in Small-Sample Setting(SSS) situations because these situations rely on a covariance matrix. In addition, large differences in performance depend on the frequency bands that are being used. To address these problems, 4-40Hz band EEG signals are divided using nine filter-banks and Regularized CSP(R-CSP) is applied to individual frequency bands. Then, the Mutual Information-Based Individual Feature(MIBIF) algorithm is applied to the features of R-CSP for selecting discriminative features. Thereafter, selected features are used as inputs of the classifier Least Square Support Vector Machine(LS-SVM). The proposed method yielded a classification accuracy of 87.5%, 100%, 63.78%, 82.14%, and 86.11% in five subjects("aa", "al", "av", "aw", and "ay", respectively) for BCI competition III dataset IVa by using 18 channels in the vicinity of the motor area of the cerebral cortex. The proposed method improved the mean classification accuracy by 16.21%, 10.77% and 3.32% compared to the CSP, R-CSP and FBCSP, respectively The proposed method shows a particularly excellent performance in the SSS situation.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. F. Lotte, C. Guan, "Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms," IEEE Trans. Biomed. Eng., Vol. 58, No. 2, pp. 355-362, Feb. 2011. https://doi.org/10.1109/TBME.2010.2082539
  2. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.-R. Muller, "Optimizing spatial filters for robust EEG single-trial analysis," IEEE Signal Process. Mag., Vol. 25, No. 1, pp. 41-56, Jan. 2008. https://doi.org/10.1109/MSP.2008.4408441
  3. M. Arvaneh, C. Guan, K. K. Ang, C. Quek, "Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram based braincomputer interface," IEEE Trans. Neural Netw. Learn. Syst., Vol. 24, No. 4, pp. 610-619, Apr. 2013. https://doi.org/10.1109/TNNLS.2013.2239310
  4. J. R. Wolpaw, D. J. McFarland, T. M. Vaughan, "Brain-computer interface research at the Wadsworth center," IEEE Trans. Rehab. Eng., Vol. 8, pp. 222-226, Jun. 2000. https://doi.org/10.1109/86.847823
  5. H. Lu, H. L. Eng, C. Guan, K. N. Plataniotis, A. N. Venetsanopoulos, "Regularized common spatial patterns with aggregation for EEG classification in small-sample setting," IEEE Trans. Biomed. Eng., Vol. 57, No. 12, pp. 2936-2945, Dec. 2010. https://doi.org/10.1109/TBME.2010.2082540
  6. W. Samek, C. Vidaurre, K.-R. Muller, M. Kawanabe, "Stationary common spatial patterns for brain-computer interfacing," J. Neural Eng., Vol. 9, No. 2, pp. 026013, Apr. 2012. https://doi.org/10.1088/1741-2560/9/2/026013
  7. J. Muller-Gerking, G. Pfurtscheller, H. Flyvbjerg, "Designing optimal spatial filters for single-trial EEG classification in a movement task," Clin. Neurophysiol., Vol. 110, No. 5, pp. 787-798, 1999. https://doi.org/10.1016/S1388-2457(98)00038-8
  8. S. L. Sun, J. H. Xu, L. Y. Yu, Y. G. Chen, A. L. Fang, "Mixtures of common spatial patterns for feature extraction of EEG signals," Proc. Int. Conf. on Machine Learning and Cybernetics, Jul. 2008, pp. 2923-2926.
  9. H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, "Regularized common spatial patterns with generic learning for EEG signal classification," Proc. EMBC, pp. 6599-6602, 2009.
  10. E. A. Mausavi, J. J. Maller, P. B. Fitzgerald, B. J. Lithgow, "Wavelet Common Spatial Pattern in asynchronous offline brain computer interfaces," Biomed. Signal Process. Control, Vol. 6, No. 2, pp. 121-128, Apr. 2011. https://doi.org/10.1016/j.bspc.2010.08.003
  11. K. K. Ang, C. Guan, K. S. G. Chua, B. T. Ang, C. W. K. Kuah, C. Wang, K. S. Phua, Z. Y. Chin, H. Zhang, "A clinical evaluation on the spatial patterns of non-invasive motor imagery-based brain computer interface in stroke," Proc. EMBC'08, pp. 4174-4177, 2008.
  12. Q. Novi, C. Guan, T. H. Dat, P. Xue, "Sub-band common spatial pattern (SBCSP) for brain-computer interface," Proc. 3rd Annu. Int. IEEE Eng. Med. Biol. Soc. (EMBS) Conf. Neural Eng., May pp. 204-207, 2007.
  13. K. K. Ang, Z. Y. Chin, H. Zhang, C. Guan, "Filter bank common spatial pattern (FBCSP) in braincomputer interface," Proc. IEEE Int. Joint Conf. Neural Netw., pp. 2390-2397, Jun. 2008.
  14. J. H. Friedman, "Regularized discriminant analysis," J. Amer. Statist. Assoc., Vol. 84, No. 405, pp. 165-175, Mar. 1989. https://doi.org/10.1080/01621459.1989.10478752
  15. H. Ramoser, J. Muller-Gerking, G. Pfurtscheller, "Optimal spatial filtering of single trial EEG during imagined hand movement," IEEE Trans. Rehab. Eng., Vol. 8, pp. 441-446, Dec. 2000. https://doi.org/10.1109/86.895946
  16. G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, K.-R. Muller, "Optimizing spatio-temporal filters for improving brain-computer interfacing," Proc. Advances in Neural Information Processing Systems (NIPS 05), Vol. 18, pp. 315-322, 2006.
  17. G. Blanchard, B. Blankertz, "BCI competition 2003-dataset IIa: spatial patterns of self-controlled brain rhythm modulations," IEEE Trans. Biomed. Eng., Vol. 51, pp. 1062-1066, 2004. https://doi.org/10.1109/TBME.2004.826691
  18. K. K. Ang, J. Yu, C. Guan, "Extracting and selecting discriminative features from high density NIRSbased BCI for numerical cognition," Proc. Int. Joint Conf. Neural Netw., Vol. 10, pp. 1-6, 2012.
  19. K. K. Ang, "A Brain-Computer Interface for Mental Arithmetic Task from Single-Trial Near-Infrared Spectroscopy Brain Signals," International Conference on Pattern Recognition, Singapore, pp. 3764-3767, 2012.
  20. K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, H. Zhang, "Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b," Frontiers Neurosci., Vol. 6, pp. 1-9, Mar. 2012.
  21. Data set IVa for the BCI Competition III. (2005). [Online]. Available: http://www.bbci.de/competition/iii/desc_IVa.html
  22. B. Blankertz, K.-R. Muller, D. J. Krusienski, G. Schalk, J. R.Wolpaw, A. Schlogl, G. Pfurtscheller, J. del R. Millan, M. Schroder, N. Birbaumer, "The BCI competition III: Validating alternative approaches to actual BCI problems," IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 14, No. 2, pp. 153-159, Jun. 2006. https://doi.org/10.1109/TNSRE.2006.875642
  23. G. D. Schott, "Penfields homunculus: a note on cerebral cartography," J. Neurology, Neurosurgery, Psychiatry, Vol. 56, No. 4, pp. 329-333, Apr. 1993. https://doi.org/10.1136/jnnp.56.4.329