DOI QR코드

DOI QR Code

Diversification and domain evolution of molluskan metallothioneins: a mini review

  • Nam, Yoon Kwon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Kim, Eun Jeong (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
  • Received : 2017.01.23
  • Accepted : 2017.05.25
  • Published : 2017.06.30

Abstract

Background: Metallothionein (MT) is a multifunctional protein playing important roles in homeostatic regulation and detoxification of metals. Mollusk species have been considered as useful sentinel platforms for MT-based biomarker approaches, and they have been reported to display an extraordinary structural diversity of MT proteins. However, potential diversity of molluskan MTs has not been fully explored and recent updates have suggested the need of revision of evolutionary hypothesis for molluskan MTs. Results: Based on bioinformatic analysis and phylogenetic evidences, novel divergence mechanisms and paths were hypothesized in both gastropod and bivalve MT groups. Our analyses are suggestive of the taxon- or lineage-specific domain multiplication/duplication from the ancestral or prototypic MT. Diversification and selection of molluskan MTs might be driven by the needs for acquiring metal selectiveness, specialized novel function, and improved capacity of metal detoxification under environmentally stressed conditions. Conclusion: The structural diversity and variations of molluskan MTs are significantly larger than previously understood. Undoubtedly, molluskan MTs have undergone dynamic divergent processes in their evolutionary histories, giving rise to the great diversity of domain structures in extant MT isoforms. Novel evolutionary paths for molluskan MTs newly proposed in this review could shed additional light onto the revision of the hypothesis for evolutionary differentiation of MTs in the molluskan lineage.

Keywords

References

  1. Aceto S, Formisano G, Carella F, Vico GD, Gaudio L. The metallothionein genes of Mytilus galloprovincialis: genomic organization, tissue expression and evolution. Mar Genom. 2011;4:61-8. https://doi.org/10.1016/j.margen.2011.01.001
  2. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbowd PS. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol. 2006;76:160-202. https://doi.org/10.1016/j.aquatox.2005.08.015
  3. Baek MK, Lee JS, Kang SW, Lee JB, Kang HJ, et al. Phylogenetic analysis based on metallothionein gene sequence of an indigenous species Pisidium (Neopisidium) coreanum in Korea. Kor J Malacol. 2009;25:153-60.
  4. Barsyte D, White KN, Lovejoy DA. Cloning and characterization of metallothionein cDNAs in the mussel Mytilus edulis L. digestive gland. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999;122:287-96. https://doi.org/10.1016/S0742-8413(98)10126-3
  5. Beach LR, Palmiter RD. Amplification of the metallothionein-I gene in cadmiumresistant mouse cells. Proc Natl Acad Sci. 1981;78:2110-4. https://doi.org/10.1073/pnas.78.4.2110
  6. Berger B, Dallinger R, Gehrig P, Hunziker PE. Primary structure of a copperbinding metallothionein from mantle tissue of the terrestrial gastropod Helix pomatia L. Biochem J. 1997;328:219-24. https://doi.org/10.1042/bj3280219
  7. Binz PA, Kagi JHR. Metallothionein: molecular evolution and classification. In: Klaassen C, editor. Metallothionein. Basel: Birkhauser; 1999. p. 7-13.
  8. Blindauer CA, Leszczyszyn OI. Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep. 2010;27: 720-41. https://doi.org/10.1039/b906685n
  9. Braun W, Wagner G, Worgotter E, Vasak M, Kagi JH, Wuthrich K. Polypeptide fold in the two metal clusters of metallothionein- 2 by nuclear magnetic resonance in solution. J Mol Biol. 1986;187:125-9. https://doi.org/10.1016/0022-2836(86)90412-2
  10. Capasso C, Carginale V, Scudiero R, Crescenzi O, Spadaccini R, Temussi PA, Parisi E. Phylogenetic divergence of fish and mammalian metallothionein: relationships with structural diversification and organismal temperature. J Mol Evol. 2003;57:S250-7. https://doi.org/10.1007/s00239-003-0034-z
  11. Carpene E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol. 2007;21:35-9. https://doi.org/10.1016/j.jtemb.2007.09.011
  12. Chang YT, Jong KJ, Liao BK, Wu SM. Cloning and expression of metallothionein cDNA in the hard clam (Meretrix lusoria) upon cadmium exposure. Aquaculture. 2007;262:504-13. https://doi.org/10.1016/j.aquaculture.2006.11.010
  13. Chiaverini N, Ley MD. Protective effect of metallothionein on oxidative stressinduced DNA damage. Free Radic Res. 2010;44:605-13. https://doi.org/10.3109/10715761003692511
  14. Cho YS, Choi BN, Ha EM, Kim KH, Kim SK, Kim DS, Nam YK. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis. Mar Biotechnol. 2005;7:350-62. https://doi.org/10.1007/s10126-004-0043-y
  15. Cho YS, Lee SY, Kim K-Y, Bang IC, Kim DS, Nam YK. Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon. Ecotoxicol Environ Saf. 2008;71:125-37. https://doi.org/10.1016/j.ecoenv.2007.08.005
  16. Cho YS, Lee SY, Kim KY, Nam YK. Two metallothionein genes from mud loach Misgurnus mizolepis (Teleostei: Cypriniformes): gene structure, genomic organization, and mRNA expression analysis. Comp Biochem Physiol B Biochem Mol Biol. 2009;153:317-26. https://doi.org/10.1016/j.cbpb.2009.04.002
  17. Cols N, Romero-Isart N, Bofill R, Capdevila M, Gonzalez-Duarte P, Gonzalez-Duarte R, Atrian S. In vivo copper- and cadmium-binding ability of mammalian metallothionein beta domain. Protein Eng. 1999;12:265-9. https://doi.org/10.1093/protein/12.3.265
  18. Cong M, Wu H, Liu X, Zhao J, Wang X, Lv J, Hou L. Effects of heavy metals on the expression of a zinc-inducible metallothionein-III gene and antioxidant enzyme activities in Crassostrea gigas. Ecotoxicology. 2012;21:1928-36. https://doi.org/10.1007/s10646-012-0926-z
  19. Dallinger R, Berger B, Hunziker PE, Birchler N, Hauer CR, Kagi JHR. Purification and primary structure of snail metallothionein. Similarity of the N-terminal sequence with histones H4 and H2A. Eur J Biochem. 1993;216:739-46. https://doi.org/10.1111/j.1432-1033.1993.tb18193.x
  20. Desclaux-Marchand C, Paul-Pont I, Gonzaleza P, Baudrimont M, Montaudouin X. Metallothionein gene identification and expression in the cockle (Cerastoderma edule) under parasitism (trematodes) and cadmium contaminations. Aquat Living Resour. 2007;20:43-9. https://doi.org/10.1051/alr:2007014
  21. Dondero F, Piacentini L, Banni M, Rebelo M, Burlando B, Viarengo A. Quantitative PCR analysis of two molluscan metallothionein genes unveils differential expression and regulation. Gene. 2005;345:259-70. https://doi.org/10.1016/j.gene.2004.11.031
  22. English TE, Storey KB. Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorea. J Exp Biol. 2003;206:2517-24. https://doi.org/10.1242/jeb.00465
  23. Faller P. Neuronal growth-inhibitory factor (metallothionein-3): reactivity and structure of metal-thiolate clusters. FEBS J. 2010;277:2921-30. https://doi.org/10.1111/j.1742-4658.2010.07717.x
  24. Fang Y, Yang H, Wang T, Liu B, Zhao H, Chen M. Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactra veneriformis. Comp Biochem Physiol C Toxicol Pharmacol. 2010;151:325-33. https://doi.org/10.1016/j.cbpc.2009.12.005
  25. Fang Y, Yang H, Liu B, Zhang L. Transcriptional response of lysozyme, metallothionein, and superoxide dismutase to combined exposure to heavy metals and bacteria in Mactra veneriformis. Comp Biochem Physiol C Toxicol Pharmacol. 2013;157:54-62. https://doi.org/10.1016/j.cbpc.2012.10.002
  26. Geffard A, Geffard O, Amiard JC, His E, Amiard-Triquet C. Bioaccumulation of metals in sediment elutriates and their effects on growth, condition index, and metallothionein contents in oyster larvae. Arch Environ Contam Toxicol. 2007;53:57-65. https://doi.org/10.1007/s00244-006-0046-y
  27. Guo F, Tu R, Wang W-X. Different responses of abalone Haliotis discus hannai to waterborne and dietary-borne copper and zinc exposure. Ecotoxicol Environ Saf. 2013;91:10-7. https://doi.org/10.1016/j.ecoenv.2013.01.002
  28. Gupta SK, Singh J. Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: a review. IIOAB. 2011;2:49-57.
  29. Inoue K-I, Takano H, Shimada A, Satoh M. Metallothionein as an antiinflammatory mediator. Mediat Inflamm. 2009;101659.
  30. Isani G, Carpene E. Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biogeosciences. 2014;4:435-57.
  31. Jenny MJ, Ringwood AH, Schey K, Warr GW, Chapman RW. Diversity of metallothioneins in the American oyster, Crassostrea virginica, revealed by transcriptomic and proteomic approaches. Eur J Biochem. 2004;271:1702-12. https://doi.org/10.1111/j.1432-1033.2004.04071.x
  32. Jenny MJ, Warr GW, Ringwood AH, Baltzegar DA, Chapman RW. Regulation of metallothionein genes in the American oyster (Crassostrea virginica): ontogeny and differential expression in response to different stressors. Gene. 2006;379:156-65. https://doi.org/10.1016/j.gene.2006.05.004
  33. Jenny MJ, Payton SL, Baltzegar DA, Lozier JD. Phylogenetic analysis of molluscan metallothioneins: evolutionary insight from Crassostrea virginica. J Mol Evol. 2016;83:110-25. https://doi.org/10.1007/s00239-016-9758-4
  34. Jiang LJ, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci. 1998;95:3483-8. https://doi.org/10.1073/pnas.95.7.3483
  35. Jiang LJ, Vasak M, Vallee BL, Maret W. Zinc transfer potentials of the alpha- and beta-clusters of metallothionein are affected by domain interactions in the whole molecule. Proc Natl Acad Sci. 2000;97:2503-8. https://doi.org/10.1073/pnas.97.6.2503
  36. Jiang GP, Cheng XY, Teng SS, Chai XL, Lin XG, Liu GX, Xiao GQ. Cloning and expression of metallothionein gene in Meretrix lamarckii. Acta Hydrobiol Sin. 2016;40:914-20.
  37. Khoo HW, Patel KH. Metallothionein cDNA, promoter, and genomic sequences of the tropical green mussel. Perna viridis J Exp Zool. 1999;284:445-53. https://doi.org/10.1002/(SICI)1097-010X(19990901)284:4<445::AID-JEZ11>3.0.CO;2-T
  38. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  39. Kurasaki M, Yamaguchi R, Linde Arias R, Okabe M, Kojima Y. Significance of alphafragments of metallothionein in cadmium binding. Prot Eng. 1997;10:413-6. https://doi.org/10.1093/protein/10.4.413
  40. Ladhar-Chaabouni L, Mokdad-Gargouri R, Denis F, Hamza-Chaffai A. Cloning and characterization of cDNA probes for the analysis of metallothionein gene expression in the Mediterranean bivalves: Ruditapes decussatus and Cerastoderma glaucum. Mol Biol Rep. 2009;36:1007-14. https://doi.org/10.1007/s11033-008-9274-8
  41. Le TTY, Zimmermann S, Sures B. How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? Environ Pollut. 2016;212:257-68. https://doi.org/10.1016/j.envpol.2016.01.070
  42. Lee SY, Nam YK. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai). Fish Shellfish Immunol. 2016;58:530-41. https://doi.org/10.1016/j.fsi.2016.09.030
  43. Leignel V, Laulier M. Isolation and characterization of Mytilus edulis metallothionein genes. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142:12-8. https://doi.org/10.1016/j.cbpc.2005.09.011
  44. Leignel V, Hardivillier Y, Laulier M. Small metallothionein MT-10 genes in coastal and hydrothermal mussels. Mar Biotechnol. 2005;7:236-44. https://doi.org/10.1007/s10126-004-0135-8
  45. Lemoine S, Bigot Y, Sellos D, Cosson RP, Laulier M. Metallothionein isoforms in Mytilus edulis (Mollusca, Bivalvia): complementary DNA characterization and quantification of expression in different organs after exposure to cadmium, zinc, and copper. Mar Biotechnol. 2000;2:195-203.
  46. Leung PTY, Park TJ, Wang Y, Che CM, Leung KMY. Isoform-specific responses of metallothioneins in a marine pollution biomonitor, the green-lipped mussel Perna viridis, towards different stress stimulations. Proteomics. 2014;14:1796-807. https://doi.org/10.1002/pmic.201300439
  47. Lieb B. A new metallothionein gene from the giant keyhole limpet Megathura crenulata. Comp Biochem Physiol C Toxicol Pharmacol. 2003;134:131-7. https://doi.org/10.1016/S1532-0456(02)00215-6
  48. Liu WQ, Ni DJ, Song LS, Wu LT, Xu W, Kong XY. Cloning and characterization of a metallothionein gene in bay scallop Argopecten irradians. Oceanol Limnol Sin. 2006;37:444-9.
  49. Lu D, Luo KY, Pan BP, Gao H. Expression of metallothionein and thioredoxin gene in Cyclina sinensis exposed to cadmium. Oceanol Limnol Sin. 2012;43:47-51.
  50. Lynes MA, Hidalgo J, Manso Y, Devisscher L, Laukens D, Lawrence DA. Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaper. 2014;19:605-11. https://doi.org/10.1007/s12192-014-0501-z
  51. Mao H, Wang DH, Yang WX. The involvement of metallothionein in the development of aquatic invertebrate. Aquat Toxicol. 2012;110-111:208-13. https://doi.org/10.1016/j.aquatox.2012.01.018
  52. Marie V, Gonzalez P, Baudrimont M, Boutet I, Moraga D, Bourdineaud JP, Boudou A. Metallothionein gene expression and protein levels in triploid and diploid oysters Crassostrea gigas after exposure to cadmium and zinc. Environ Toxicol Chem. 2006;25:412-8. https://doi.org/10.1897/05-114R.1
  53. Maroni G, Wise J, Young JE, Otto E. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics. 1987; 117:739-44.
  54. Mehra RK, Garey JR, Winge DR. Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J Biol Chem. 1990; 265:6369-75.
  55. Munoz A, Petering DH, Shaw CF. 3rd. Structure-reactivity among metallothionein three-metal domains: role of noncysteine amino acid residues in lobster metallothionein and human metallothionein-3. Inorg Chem. 2000;39:6114-23. https://doi.org/10.1021/ic000485s
  56. Nielson KB, Winge DR. Order of metal binding in metallothionein. J Biol Chem. 1983;258:13063-9.
  57. Nielson KB, Winge DR. Preferential binding of copper to the beta domain of metallothionein. J Biol Chem. 1984;259:4941-6.
  58. Palacios O, Pagani A, Perez-Rafael S, Egg M, Hockner M, Brandstatter A, Capdevila M, Atrian S, Dallinger R. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins. BMC Biol. 2011;9:4. https://doi.org/10.1186/1741-7007-9-4
  59. Paul-Pont I, Gonzalez P, Montero N, Montaudouin X, Baudrimont M. Cloning, characterization and gene expression of a metallothionein isoform in the edible cockle Cerastoderma edule after cadmium or mercury exposure. Ecotoxicol Environ Saf. 2012;75:119-26. https://doi.org/10.1016/j.ecoenv.2011.08.025
  60. Pedersen KL, Pedersen SN, Hojrup P, Andersen JS, Roepstorff P, Knudsen J, Depledge MH. Purification and characterization of a cadmium-induced metallothionein from the shore crab Carcinus maenas (L.). Biochem J. 1994;297:609-14. https://doi.org/10.1042/bj2970609
  61. Perez-Rafael S, Monteiro F, Dallinger R, Atrian S, Palacios O, Capdevila M. Cantareus aspersus metallothionein metal binding abilities: the unspecific CaCd/CuMT isoform provides hints about the metal preference determinants in metallothioneins. Biochim Biophys Acta. 1844;2014:1694-707.
  62. Perez-Rafael S, Mezger A, Lieb B, Dallinger R, Capdevila M, Palacios O, Atrian S. The metal binding abilities of Megathura crenulata metallothionein (McMT) in the frame of Gastropoda MTs. J Inorg Biochem. 2012;108:84-90. https://doi.org/10.1016/j.jinorgbio.2011.11.025
  63. Raspor B, Dragun Z, Erk M, Ivankovic D, Pavicic J. Is the digestive gland of Mytilus galloprovincialis a tissue of choice for estimating cadmium exposure by means of metallothioneins? Sci Total Environ. 2004;333:99-108. https://doi.org/10.1016/j.scitotenv.2004.05.008
  64. Sarkar A, Ray D, Shrivastava AN, Sarker S. Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicology. 2006;15:333-40. https://doi.org/10.1007/s10646-006-0069-1
  65. Seren N, Glaberman S, Carretero MA, Chiari Y. Molecular evolution and functional divergence of the metallothionein gene family in vertebrates. J Mol Evol. 2014;78:217-33. https://doi.org/10.1007/s00239-014-9612-5
  66. Stephan W, Rodriguez VS, Zhou B, Parsch J. Molecular evolution of the metallothionein gene Mtn in the melanogaster species group: results from Drosophila ananassae. Genetics. 1994;138:135-43.
  67. Tang RS, Xia JH, Wang YM, Gong SY, Yu DH. Analysis on cloning and sequence characteristics of metallothionein cDNA in Pinctada maxima. J Anhui Agricult Sci. 2009;37:2888-90.
  68. Tanguy A, Moraga D. Cloning and characterization of a gene coding for a novel metallothionein in the Pacific oyster Crassostrea gigas (CgMT2): a case of adaptive response to metal-induced stress? Gene. 2001;273:123-30. https://doi.org/10.1016/S0378-1119(01)00577-7
  69. Tanguy A, Mura C, Moraga D. Cloning of a metallothionein gene and characterization of two other cDNA sequences in the Pacific oyster Crassostrea gigas (CgMT1). Aquat Toxicol. 2001;55:35-47. https://doi.org/10.1016/S0166-445X(01)00160-6
  70. Tanguy A, Boutet I, Riso R, Boudry P, Auffret M, Moraga D. Metallothionein genes in the European flat oyster Ostrea edulis: a potential ecological tool for environmental monitoring? Mar Ecol Prog Ser. 2003;257:87-97. https://doi.org/10.3354/meps257087
  71. Tschuschke S, Schmitt-Wrede HP, Greven H, Wunderlich F. Cadmium resistance conferred to yeast by a non-metallothionein-encoding gene of the earthworm Enchytraeus. J Biol Chem. 2002;277:5120-5. https://doi.org/10.1074/jbc.M108426200
  72. Vergani L, Grattarola M, Borghi C, Dondero F, Viarengo A. Fish and molluscan metallothioneins: a structural and functional comparison. FEBS J. 2005;272: 6014-23. https://doi.org/10.1111/j.1742-4658.2005.04993.x
  73. Vergani L, Grattarola M, Grasselli E, Dondero F, Viarengo A. Molecular characterization and function analysis of MT-10 and MT-20 metallothionein isoforms from Mytilus galloprovincialis. Arch Biochem Biophys. 2007;465:247-53. https://doi.org/10.1016/j.abb.2007.05.023
  74. Wang H, Zhang Q, Cai B, Li H, Sze KH, Huang ZX, Wu HM, Sun H. Solution structure and dynamics of human metallothionein-3 (MT-3). FEBS Lett. 2006; 580:795-800. https://doi.org/10.1016/j.febslet.2005.12.099
  75. Wang L, Song L, Ni D, Zhang H, Liu W. Alteration of metallothionein mRNA in bay scallop Argopecten irradians under cadmium exposure and bacteria challenge. Comp Biochem Physiol C Toxicol Pharmacol. 2009;149:50-7. https://doi.org/10.1016/j.cbpc.2008.07.001
  76. Wang Q, Wang X, Wang X, Yang H, Liu B. Analysis of metallothionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure. Aquat Toxicol. 2010;100:321-8. https://doi.org/10.1016/j.aquatox.2010.08.012
  77. Wang W-C, Mao H, Ma D-D, Yang W-X. Characteristics, functions and applications of metallothionein in aquatic vertebrates. Front Mar Sci. 2014;1:34.
  78. Wang C, Sheng J, Hong Y, Peng K, Wang J, Wu D, Shi J, Hu B. Molecular characterization and expression of metallothionein from freshwater pearl mussel. Hyriopsis schlegelii Biosci Biotechnol Biochem. 2016;80:1327-35. https://doi.org/10.1080/09168451.2016.1153954
  79. Xiong Y, Chen Y, Ru B. The expressed alpha domain of mouse metallothionein-I from Escherichia coli displays independent structure and function. Biochem Mol Biol Int. 1998;46:307-19.
  80. Yang S, Wei M, Yang X, Wang H, He L, Li C. A novel metallothionein gene from mussel, Hyriopsis cumingii: Identification and expression under lanthanum exposure. J World Aquacult Soc. 2014;45:454-60. https://doi.org/10.1111/jwas.12140
  81. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49-54. https://doi.org/10.1038/nature11413

Cited by

  1. Accumulation of Trace Metal in Sediment and Soft Tissue of Strombus canarium in a Tropical Remote Island of Thailand vol.9, pp.9, 2017, https://doi.org/10.3390/jmse9090991